Возможности ультразвукового метода исследования. Трёхмерное допплеровское картирование и трёхмерная ЭД

Медицине известно множество способов различных обследований. Это может быть обычный осмотр, лабораторная диагностика, и ультразвуковое обследование. Именно о последнем методе и пойдет речь в данной статье. Вы узнаете, какие виды имеет ультразвуковое обследование. Также сможете выяснить, каким образом проводится тот или иной вид диагностики.

Ультразвуковое обследование

Для начала стоит сказать, что это за диагностика. Во время исследования используется специальный датчик, который присоединен к аппаратуре. Прибор посылает сквозь ткани человека звуковые волны. Они не могут быть слышны простому уху. Звук отражается от тканей и внутренних органов, а специалист вследствие данного процесса видит изображение на экране. Стоит отметить, что такой контакт происходит очень быстро. Изображение исследуемой области появляется сразу после того, как датчик будет приложен к телу.

Виды ультразвуковой диагностики

Ультразвуковое обследование может быть разное. Такая диагностика подразделяется на виды. Стоит отметить, что в каждом отдельном случае используется специальный датчик. Их на может быть от двух и более. Итак, ультразвуковая диагностика может быть следующей:

  • дуплексное сканирование состояния сосудов;
  • эхокардиографическое исследование;
  • эхоэнцефалографическая диагностика;
  • соноэластография;
  • трансвагинальная диагностика;
  • трансабдоминальный вид ультразвука.

В зависимости от нужного метода исследования может понадобиться предварительная подготовка пациента. Рассмотрим наиболее популярные виды ультразвукового обследования.

и придатков

Данный вид исследования проводится при помощи При этом необходимо учитывать возраст пациентки, день цикла и регулярность половой жизни.

Ультразвуковое обследование беременной женщины проводится трансабдоминальным способом. Исключение составляют лишь те представительницы прекрасного пола, у которых срок беременности очень мал.

Особой подготовки такие обследования не требуют. Необходимо лишь провести гигиенические общепринятые процедуры перед диагностикой.

УЗИ вен нижних конечностей человека

Ультразвуковое обследование сосудов проводится во время При этом оценивается проходимость вен и наличие тромбов и расширений. Также во время исследования обращается большое внимание на кровоток и состояние верхних клапанов.

Подготовка к такому обследованию не нужна. Однако будьте готовы к тому, что вам придется полностью оголить ноги. Предпочтите использование свободной и быстро снимающейся одежды.

Органы брюшины

Ультразвуковое обследование брюшной полости позволяет выявить проблемы пищеварительного тракта и соседних органов. При этой диагностике нужно заранее подготовиться к процедуре.

Если нужно осмотреть желудок, то стоит воздержаться от приема пищи до обследования. При диагностике кишечника стоит воспользоваться слабительным средством или поставить клизму. Осмотр печени, почек и желчного пузыря может быть проведен без предварительной подготовки.

Как осуществляется диагностика?

Для каждого вида обследования выбирается индивидуальный датчик. При этом всегда используется специальный гель, который облегчает скольжение прибора по телу и улучшает проходимость тканей.

В большинстве случаев диагностика проводится в лежачем положении. При этом кушетка должна быть твердой, а в кабинете необходимо создать эффект полумрака. Исключение может составлять дуплексное сканирование и УЗИ почек. Эти обследования могут проводиться в вертикальном положении пациента.

Заключение

Ультразвуковая диагностика является одной из наиболее точных. При помощи такого осмотра врач может четко увидеть состояние внутренних органов и оценить степень риска. Также диагностика ультразвуком помогает правильно поставить диагноз и назначить соответствующее лечение.

Регулярно проводите подобные осмотры. Метод УЗИ является абсолютно безопасным и не несет никакой угрозы вашему здоровью.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Изучение физических основ ультразвуковой диагностики. Метрологические прослеживаемые акустические параметры, характеризующие ультразвуковое излучение медицинского оборудования. Государственная поверочная схема для средств измерений мощности излучения.

    курсовая работа , добавлен 20.12.2015

    История, принципы выполнения, преимущества и недостатки рентгенологического, ультразвукового и эндоскопического методов исследования пациентов. Применение аспирационной и операционной биопсии в клинической практике. Особенности компьютерной томографии.

    курсовая работа , добавлен 16.06.2015

    Методы диагностики патологии поджелудочной железы и двенадцатиперстной кишки. Показания к назначению ультразвукового исследования. Подготовка пациента к процедуре магнитно-резонансной томографии. Эндоскопическая ретроградная панкреатохолангиография.

    презентация , добавлен 02.03.2013

    Сущность и значение эхокардиографии как широко распространенной современной ультразвуковой методики, применяемой для диагностики многообразной сердечной патологии. Принципы работы ультразвукового датчика. Показаниями для чреспищеводной эхокардиографии.

    презентация , добавлен 16.05.2016

    Формы вирусного гепатита. Диагностические возможности ультразвукового метода. Радиоизотопные методы исследования. Диагностика желтухи при желчнокаменной болезни и новообразованиях гепатопанкреатодуоденальной зоны (рак головки поджелудочной железы).

    презентация , добавлен 13.05.2014

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.

    курсовая работа , добавлен 15.06.2013

    Значение определения опухолевых маркеров. Компьютерная томография грудной клетки. Преимущества виртуальной колоноскопии. Применение эндоскопических методов исследования в диагностике и профилактике ЗНО. Достоинства метода ультразвуковой диагностики.

    Подготовка к проведению УЗИ

    Подготовка пациента к ультразвуковому исследованию (УЗИ) имеет большое значение, поскольку может сказаться на качестве получаемого изображения и, в конечном счете, результатах обследования. УЗИ - метод, основанный на расшифровке возвращаемых от сканируемого органа ультразвуковых сигналов. Он применяется для исследования различных органов или систем организма - брюшной полости, органов малого таза, сосудов и др. Метод УЗИ для пациента не представляет опасности или дискомфорта, он очень прост и доступен, причем не занимает много времени. УЗИ позволяет увидеть новообразования, воспалительные процессы, тромбы в сосудах и другие отклонения от нормы.

    УЗИ органов брюшной полости

    За 2 - 3 дня до обследования рекомендуется перейти на бесшлаковую диету, исключить из рациона продукты, усиливающие газообразование в кишечнике (сырые овощи, богатые растительной клетчаткой, цельное молоко, черный хлеб, бобовые, газированные напитки, а также высококалорийные кондитерские изделия - пирожные, торты).

    Целесообразно, в течение этого промежутка времени, принимать ферментные препараты и энтеросорбенты (например, фестал, мезим-форте, активированный уголь или эспумизан по 1 таблетке 3 раза в день), которые помогут уменьшить проявления метеоризма.

    УЗИ органов брюшной полости необходимо проводить натощак, если исследование невозможно провести утром, допускается легкий завтрак.
    Не рекомендуется курить до исследования. Если Вы принимаете лекарственные средства, предупредите об этом врача, проводящего УЗИ. Нельзя проводить исследование после рентгеноскопии желудка, ирригоскопии, ФГДС в течение 3-х дней.

    УЗИ органов малого таза (мочевой пузырь, матка, придатки у женщин)

    У девочек и женщин, никогда не живших половой жизнью, проводится трансабдоминальное ультразвуковое исследование органов малого таза, которое проводится при полном мочевом пузыре. Поэтому необходимо до исследования не мочиться в течение 3-4 часов или выпить 1 л негазированной жидкости за 1 час до процедуры.

    Женщины, живущие половой жизнью, обследуются трансвагинально. Для трансвагинального УЗИ (ТВУЗИ) специальная подготовка не требуется. В случае, если у пациентки проблемы с ЖКТ - необходимо провести очистительную клизму накануне вечером. Перед обследованием нужно опорожнить мочевой пузырь.

    УЗИ мочевого пузыря

    Трансабдоминальное исследование у мужчин и женщин проводится при полном мочевом пузыре. Для этого примерно за 1,5 - 2 часа до УЗИ необходимо выпить 1,0-1,5 литра негазированной воды и не мочиться после этого. Или: не опорожнять мочевой пузырь в течение 5 - 6 часов до процедуры.

    Если УЗИ будет проводиться трансректально, надо накануне процедуры и за несколько часов до нее сделать очистительную клизму.

    Это необходимо, чтобы на момент исследование не было вздутия кишечника. Поэтому за 3 дня до проведения процедуры нужно хорошо подготовиться. Придерживайтесь ограничений в пище для уменьшения газообразования: не ешьте фрукты с овощами в свежем виде; фасоль, горох, чечевицу и иные бобовые; сдобу, содержащую дрожжи; свежее молоко и кисломолочные продукты; алкогольные и сладкие напитки.

    ЭХО-КГ (УЗИ сердца)

    Единственный нюанс касается людей с тахиаритмиями и повышенным артериальным давлением: непосредственно перед исследованием должна быть проведена консультация кардиолога. Врач должен сказать, есть ли необходимость снижать пульс и/или давление, если пульс больше 90 в минуту, а АД - выше 170/99 мм рт.ст. Это нужно, чтобы правильно трактовать результаты исследования.

    УЗИ молочных желез

    Исследование молочных желез желательно проводить на 5-10 день менструального цикла. Перед процедурой необходимо провести гигиенические процедуры, направленные на очищение кожи груди и области подмышечных впадин.

    УЗИ предстательной железы

    Трансабдоминальное ультразвуковое исследование предстательной железы проводится при полном мочевом пузыре, поэтому необходимо не мочиться до исследования в течение 3-4 часов или выпить 1 л негазированной жидкости за 1 час до процедуры.

    Перед трансректальном исследовании простаты (ТРУЗИ) необходимо сделать очистительную клизму и опорожнить мочевой пузырь.

    УЗИ лимфоузлов, мягких тканей (кожи, подкожной клетчатки)

    Специальной подготовки не требуется.

    УЗИ щитовидной железы

    Специальной подготовки к исследованию не требуется.

    Женщинам УЗИ щитовидной железы лучше всего проводить на 7-9 день после завершения менструации.

    Стоит помнить, что в процессе проведения исследования врач может немного надавливать на горло, что иногда провоцирует рвотный рефлекс. Молодые люди, не страдающие от проблем с пищеварением, как правило, выдерживают процедуру без проявления рвотного рефлекса. Однако пожилым пациентам рекомендуется проходить процедуру утром и натощак для избегания дискомфортных ощущений.

    УЗИ почек

    Почки редко обследуются изолированно от других мочевыделительных органов. Для полноценной диагностики дополнительно оценивают работу надпочечников, мочевого пузыря, кровоток в почечных сосудах (допплер), по показаниям УЗИ почек совмещают с осмотром органов пищеварительной, репродуктивной систем.

    Чтобы обеспечить нормальную визуализацию почек необходимо позаботиться о чистоте кишечника. К моменту процедуры он не должен быть полон. При нормальном пищеварении достаточно обычного опорожнения кишечника вечером или утром перед УЗИ. Исследование, назначенное на утро, удобней проходить натощак. Последний прием пищи вечером должен быть легким, за 8 - 12 часов до времени процедуры. Это правило обязательно для пациентов, у которых исследование почек совмещается с осмотром органов брюшной полости. При УЗИ во второй половине дня разрешается позавтракать рано утром. Можно съесть белый сухарик, кусочек отварного мяса, кашу на воде. Через 1 - 1,5 часа после завтрака принять активированный уголь (из расчета 1 растолченная таблетка на каждые 10 кг массы тела) или любой другой сорбент. Проблемы со стулом обязательно нужно устранить. Непосредственно перед УЗИ клизму делать нельзя. Если такая необходимость есть, очищение клизмой можно провести за 1 - 2 дня до исследования. Лучше принять мягкое слабительное, поставить глицериновую свечку или воспользоваться микроклизмой (Микролакс). Для улучшения пищеварения можно в течение 3 дней до исследования принимать с пищей ферменты (Мезим, Панкреатин, Креон). Еда будет лучше перевариваться, выделять меньше газов и легче эвакуироваться из кишечника. При метеоризме показан прием препаратов на основе симетикона (Эспумизан, Симетикон, Симикол, Метеоспазмин). Лишние газы из кишечника хорошо удаляют энтеросорбенты (активированный уголь, Энтеросгель, Смекта).

    УЗИ сосудов головы и шеи

    Какой-либо специальной подготовки для процедуры УЗДГ нет.

    Однако стоит помнить о тех веществах, которые оказывают влияние на состояние сосудов, а именно на их тонус, и в день исследования по возможности ограничить себя в потреблении этих веществ. К таким веществам относятся: никотин, чай, кофе и др.

    Об ультразвуковой диагностике на сегодняшний день известно немало. Росту популяризации данной методики исследования человеческого организма на протяжении полувека способствовала ее доказанная безопасность и информативность.

    Несмотря на то что общим представлением об УЗ скрининге обладает большая часть современных пациентов, остается немало вопросов, недостаточная освещенность которых вызывает множество дискуссий.

    Начать, пожалуй, следует с того, что представляет собой как таковое. Современная научная медицина постоянно развивается, не стоит на месте, что позволяет ученым достигать различных способов изучения состояния организма.

    В любом случае поиски приводят специалистов к совершенствованию диагностического института. Одним из таких открытий по праву считают УЗИ. Пытаясь дать определение понятию «УЗ исследование», в первую очередь стоит отметить его неинвазивность.

    Проведение ультразвукового обследования внутренних органов человека позволяет дать максимально объективную оценку их состояния, функционирования, подтвердить или опровергнуть подозрения на развитие патологических процессов, а также отслеживать, происходит ли восстановление пораженных в прошлом органов в ходе назначенного лечения.

    Между тем стоит отметить, что отрасль ультразвуковой диагностики не перестает идти вперед уверенными шагами, открывая новые возможности для доступного выявления заболеваний.

    Как ультразвук применяется при обследовании: принцип действия

    Процесс выявления патологий происходит за счет восприятия сигналов высокой частоты. Ультразвуковые волны, или, если их можно так назвать, сигналы, подаются через датчик оборудования на обследуемый объект, результатом чего и становится отображение на экране аппарата.

    Для идеально плотного соприкосновения с исследуемой поверхностью на кожу человека наносят специальный гель, обеспечивающий скольжение датчика и предотвращающий попадание воздуха между ним и исследуемым участком.

    Четкость изображения во многом зависит от величины коэффициента отражения внутреннего органа, который разнится за счет его неоднородной плотности и структуры. Именно поэтому УЗ исследование не проводят при диагностике легких: полное отражение сверхзвуковых сигналов воздухом, присутствующим в легких, препятствует получению какой-либо достоверной информации о легочной ткани.

    При этом чем выше уровень плотности обследуемого участка органа, тем выше сопротивление к отражению. В результате чего на мониторе возникают затемненные или более светлые картинки изображения. Первый вариант изображения встречается чаще, во втором случае говорят о наличии конкрементов. Более светлое изображение можно наблюдать в ходе диагностики костной ткани.

    Различные ткани обладают разной степенью проходимости по отношению к эхосигналу. Это и обеспечивает работу такого устройства

    Какие органы можно исследовать?

    Востребованность данной диагностической процедуры несложно объяснить ее универсальностью.

    УЗ скрининг позволяет получить объективные данные о состоянии самых главных органов и систем человека:

    • головной мозг;
    • лимфоузлы, внутренние пазухи;
    • глаза;
    • щитовидная железа;
    • сердечно-сосудистая система;
    • органы брюшной полости;
    • органы малого таза;
    • печень;
    • мочевыделительная система.

    Несмотря на то что исследовать головной мозг с помощью ультразвука можно только в детском возрасте, данный метод обследования применим и к сосудам шеи и головы.

    Такая диагностическая процедура позволяет получить детальное представление о кровотоке, нарушениях работы сосудов, обеспечивающих питание мозга. Скрининг проводят также при подозрении на заболевания эндокринной системы, а также гайморита, воспалительных процессов в гайморовых и лобных пазухах с целью обнаружения гноя в них.

    С помощью специального датчика диагност способен оценить состояние сосудов глазного дна, стекловидного тела, глазного нерва, получить информацию о кровоснабжении артерий. Один из органов, имеющих максимально удобное поверхностное расположение для проведения УЗ диагностики — щитовидная железа. Все, что интересует специалиста в ходе обследования, – размер долей железы, наличие доброкачественных узловых образований, состояние лимфооттока.

    При процедуре скрининга сердца и сосудов важно изучить состояние сосудов, клапанов и артерий, выявить аневризмы и стенозы, а также обнаружить тромбоз глубоких сосудов, функциональность миокарда, объем желудочка.

    На данный момент в медицине широко используется такой метод обследования организма, позволяющий исследовать любые структуры организма абсолютно безболезненно

    Другие органы для исследования ультразвуком

    С помощью ультразвука обследуют и органы брюшной полости, малого таза, печень. Благодаря диагностике стало возможным своевременное выявление воспалительных процессов, образований камней и их габаритов, наличия новообразований (их злокачественность или доброкачественность определить с помощью ультразвука невозможно).

    Отдельного внимания заслуживает УЗ диагностика женского организма. Важность ультразвукового метода исследования сложно переоценить, поскольку его используют в качестве альтернативной процедуры маммографии и рентгенографии. Однако в некоторых случаях ультразвук не способен увидеть отложения солей (кальцинатов) в молочных железах, которые нередко говорят о наличии опухоли.

    Определить, нет ли в пределах матки или яичников новообразований (кисты, фибромы, миомы, раковой опухоли), способен ультразвук.

    Чтобы объективно оценить состояние данных органов, исследование чаще всего проводят с наполненным мочевым пузырем (трансабдоминальным путем), но иногда прибегают и к трансвагинальной диагностике, как правило, в определенный день менструального цикла.

    Как проходит процедура?

    Наверное, большинству современных пациентов, периодически обращающихся за медицинской помощью, известно, как проходить исследование. Для того чтобы получить необходимую информацию о состоянии обследуемых объектов, важно обеспечить проникновение сверхчастотных волновых импульсов.

    Перед началом ультразвуковой процедуры врач настраивает оборудование, в соответствии с настройками, применяемыми для процедуры скрининга различных органов, поскольку ткани человеческого организма в разных степенях поглощают или отражают ультразвук.

    Таким образом, в ходе процедуры происходит несущественное нагревание тканей. Никакого вреда это не несет человеческому организму, поскольку процесс нагревания происходит за ограниченный период, не успевая повлиять на общее состояние пациента и его ощущения. Скрининг осуществляется с помощью специального сканера и датчика волн высокой частотности.

    Последний испускает волны, после чего происходит отражение или поглощение ультразвука от исследуемых участков, а приемник принимает поступающие волны и отправляет их в компьютер, в результате они преображаются с помощью специальной программы и отображаются на экране в режиме реального времени.

    Сам процесс проведения такой процедуры достаточно простой и абсолютно безболезненный,а со стороны пациента не требуется каких-либо специфических подготовительных мер

    Как вести себя пациенту во время исследования?

    Ультразвуковая диагностика – это процедура, прохождение которой происходит следующим образом:

    • Пациент обеспечивает доступ аппарата к исследуемому участку тканей.
    • В ходе исследования больной неподвижно лежит, однако по требованию врача может сменить позу.
    • Начинается скрининг с момента соприкосновения специального датчика с поверхностью исследуемого участка. Врач несильно должен прижимать его к кожным покровам, предварительно смазав исследуемую поверхность гелеобразным веществом.
    • Продолжительность процедуры в редких случаях превышает 15–20 минут.
    • Завершающим этапом скрининга является составление врачом итогового заключения, расшифровать результаты которого следует лечащему врачу.

    В отличие от обычных процедур, некоторые гинекологические исследования выполняются с помощью специального датчика, имеющего вытянутую форму, поскольку вводят его через влагалище. Какие-либо болезненные ощущения во время процедуры исключены.

    Эхогенность, гипоэхогенность и гиперэхогенность: что означает?

    Как правило, УЗ скрининг представляет собой процедуру, принципом которой является эхолокация.

    Как уже говорилось, это свойство тканей органов отражать поступающий к ним ультразвук, что в ходе диагностики заметно специалисту в качестве черно-белого изображения на экране. Поскольку каждый орган отражается по-разному (из-за структуры, жидкости в нем и т.д.), он виден на мониторе в определенном цвете. Например, плотные ткани отображаются белым цветом, а жидкости – черным.

    Врач, специализирующийся на УЗ исследованиях, знает, какая эхогенность в норме должна быть у каждого органа. При отклонениях показателей в большую или меньшую сторону доктор и ставит диагноз. Здоровые ткани видны в сером цвете, и в этом случае говорят об изоэхогенности.

    При гипоэхогенности, т.е. понижении нормы, цвет картинки становится темнее. Повышенная эхогенность называется гиперэхогенностью. К примеру, конкременты в почках гиперэхогенны, и волна ультразвука не может пройти сквозь них.

    Гипоэхогенность — это не заболевание, а участок высокой плотности, чаще всего оказывающийся кальцинированным уплотнением, образованным жиром, костным образованием или отложением камней

    В таком случае врачу на экране видна лишь верхняя часть камня или его тень. Гипоэхогенность свидетельствует о развитии отечности в тканях. При этом черным цветом отражается на экране наполненный мочевой пузырь, и это является нормальным показателем.

    Немаловажным моментом является то, что заметка специалиста о повышенной эхогенности должна служить поводом для серьезного беспокойства. В некоторых случаях данный признак говорит о развитии воспалительного процесса, возникновении опухоли.

    Причины погрешностей

    Абсолютно все специалисты, задействованные в сфере скрининг-диагностик, имеют представление о внушительном числе так называемых артефактов, которые нередко встречаются в ходе выполнения процедуры.

    Распознать те или иные признаки УЗ исследования далеко не всегда удается безошибочно, чему виной можно назвать:

    • физическую ограниченность возможностей методики;
    • возникновение акустических эффектов в ходе воздействия ультразвука на ткани исследуемого органа;
    • погрешности в методическом плане проведения обследования;

    некорректную интерпретацию результатов скрининга.

    Артефакты, встречающиеся во время процедуры

    Самыми распространенными артефактами, способными повлиять на заключение и ход исследования, являются:

    Акустическая тень

    Формируется от камнеобразований, костей, пузырьков воздуха, соединительнотканных и плотных образований.

    Значительное отражение звука от камня приводит к тому, что звук за ним не распространяется, и на снимках такой эффект выглядит как тень

    Артефакт широкого луча

    При попадании в срез отображения на экране желчного пузыря или кистозного образования визуально заметным становится своеобразный плотный осадок, возникает двойной контур. Причиной такого неточного отображения данных считают погрешности в технической исправности датчиков. Избежать его можно, проводя исследование в двух проекциях.

    «Хвост кометы»

    Визуализировать феномен можно в случае прохождения ультразвуком новообразований, имеющих сильно отражающую поверхность. Чаще всего данный артефакт имеет четкое значение и влечет постановку конкретного диагноза, говоря об образовании кальцинатов, желчных камней, газа, а также при попадании воздуха между аппаратом и эпидермисом (из-за неустойчивого прилегания).

    Чаще всего этот феномен наблюдается при сканировании небольших кальцинатов, мелких желчных камней, пузырьков газа, металлических тел и т.д.

    Скоростной артефакт

    Учитывать его стоит при обработке полученного изображения, поскольку скорость звука неизменна, что позволяет высчитать по времени возвращения сигнала и определить расстояние до исследуемого объекта.

    Зеркальное отражение

    Возникновение ложных структур или новообразований можно объяснить многократным отражением ультразвука при прохождении сквозь плотные объекты (печень, сосуды, диафрагма). Особенно часто данный артефакт имеет место при сканировании органа, имеющего среду с энергией, которая предназначена для незначительного поглощения волн.

    Данный артефакт является может быть маркером возможных патологий, при которых повышается плотность мягких тканей

    Сравнение ультразвука с другими видами обследования

    Помимо УЗ исследования, существуют и другие, не менее информативные способы диагностики.

    Среди аппаратных методов обследования организма пациента, ничем не уступающих по частоте применения УЗИ, являются:

    • рентгенография;
    • магнитно-резонансная томография;
    • компьютерная томография.

    При этом выделить из них самый эффективный невозможно. Каждый из них имеет свои плюсы и минусы, но нередко один метод диагностики дополняет другой, позволяя подвести итоги подозрениям врачей при недостаточно выраженной клинической картине.

    Сравнивая УЗ скрининг с МРТ, стоит обратить внимание, что аппарат последнего вида диагностики представляет собой мощнейший магнит, который оказывает непосредственное влияние на организм пациента благодаря электромагнитным волнам. При этом УЗ исследование представляет собой процедуру, в ходе которой ультразвуковые волны минимальной мощности проникают через внутренние органы с различной степенью плотности.

    Этот вид диагностики намного чаще применяют при заболеваниях органов брюшной полости, в т. ч. печени, желчного пузыря, поджелудочной железы, системы мочевыводящих путей и почек, желез эндокринной системы, сосудов шеи и головы.

    Различия между УЗ скринингом, рентгеном и КТ

    Однако ультразвук бессилен при обследовании легких и костного аппарата. Здесь на помощь придет рентгенография. Несмотря на доступность прохождения УЗ скрининга, процедура не несет в себе никакой опасности пациенту.

    В отличие от рентгенографии, которая применяется при необходимости исследования костей, ультразвук способен отобразить лишь мягкие и хрящевые ткани. К тому же УЗ скрининг не обладает столь негативными побочными эффектами в виде ионизирующего излучения. Выбирая между применением ультразвука и КТ при подозрениях на заболевания головного мозга, легких и костных тканей, специалисты, при отсутствии противопоказаний, отдают приоритет последнему.

    Вместе с контрастирующим веществом врачам нередко удается добиться качественного отображения, несущего в себе больше информативных деталей. При этом КТ дает облучение и в ряде случаев может быть противопоказано. При необходимости проведения повторных диагностических процедур с целью минимизировать риск облучения выбор останавливают на УЗ исследовании.

    Все из вышеперечисленных методов диагностики обладают высокой информативностью. Обследование выбирается в индивидуальном порядке, в зависимости от алгоритма скрининга и клинической картины пациента. УЗ диагностика, так же как и другие способы исследований, имеет свои преимущества и недостатки, поэтому прохождение процедуры строго определено показаниями.

    Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается . Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

    В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей , а также разницу в плотностях, образующих границу.

    Ультразвуковые колебания при распространении подчиняются законам геометрической оптики . В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

    Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

    Особый интерес в диагностике вызывает использование эффекта Допплера . Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

    При наложении первичных и отраженных сигналов возникают биения , которые прослушиваются с помощью наушников или громкоговорителя.

    Составляющие системы ультразвуковой диагностики

    Генератор ультразвуковых волн

    Генератором ультразвуковых волн является передатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

    Ультразвуковой датчик

    В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

    Виды датчиков

    Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

    Линейные датчики

    Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

    Конвексные датчики

    Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

    Секторные датчики

    Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

    Методики ультразвукового исследования

    Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

    • A-режим . Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
    • B-режим . Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
    • M-режим . Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной - время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.

    Допплерография

    Спектральный Допплер Общей Каротидной Артерии

    Методика основана на использовании эффекта Допплера . Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур - если движение направлено в сторону датчика, то частота увеличивается, если от датчика - уменьшается.

    Потоковая спектральная допплерография (ПСД)

    Предназначена для оценки кровотока в относительно крупных сосудах и камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной - время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси - от датчика. Помимо скорости и направления кровотока, по виду допплеровской спектрограммы можно определить характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный - широкой неоднородной кривой.

    Непрерывная (постоянноволновая) ПСД

    Методика основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на пути ультразвукового луча в пределах глубины его проникновения. Недостаток: невозможность изолированного анализа потоков в строго определенном месте. Достоинства: допускает измерение больших скоростей потоков крови.

    Импульсная ПСД

    Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.

    Цветовое допплеровское картирование (ЦДК)

    Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий - от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки - высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.

    Энергетическая допплерография (ЭД)

    Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока.

    Комбинированные варианты

    Применяются также и комбинированные варианты, в частности:

    • ЦДК+ЭД - конвергентная цветовая допплерография
    • B-режим УЗИ + ПСД (или ЭД) - дуплексное исследование

    Трёхмерное допплеровское картирование и трёхмерная ЭД

    Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения. После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное [неизвестный термин ] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).

    Эхоконтрастирование

    Методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки газа (диаметром менее 5 мкм при их циркуляции не менее 5 минут). Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью принтера .

    В клинической практике методика используется в двух направлениях.

    Динамическая эхоконтрастная ангиография

    Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

    Тканевое эхоконтрастирование

    Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

    Применение в медицине

    Терапевтическое применение ультразвука в медицине

    Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

    Ультразвук обладает действием:

    • противовоспалительным, рассасывающим
    • анальгезирующим, спазмолитическим
    • кавитационным усилением проницаемости кожи

    Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

    • лечебное вещество при введении ультразвуком не разрушается
    • синергизм действия ультразвука и лечебного вещества

    Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; невриты, нейропатии, радикулиты, невралгии, травмы нервов.

    Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см 2 , в области грудного и поясничного отдела - 0,4-0,6 Вт/см 2).

    Опасность и побочные эффекты

    Ультразвуковое исследование в целом считается безопасным способом получения информации.

    Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА -принципу.

    Отчёт 875 Всемирной организации здравоохранения за 1998 г. поддерживает мнение, что ультразвук безвреден: «Диагностическое ультразвуковое исследование плода признаётся безопасным, эффективным и в высокой степени гибким способом получением изображения, позволяющим выявить клинически существенную информацию о большинстве частей тела быстрым и рентабельным способом». Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

    Эхоэнцефалография

    Основная статья: Эхоэнцефалография

    Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

    Офтальмология

    Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

    Внутренние болезни

    Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

    • брюшная полость и забрюшинное пространство
    • органы малого таза

    Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д.

    В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

    Печень

    Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

    Жёлчный пузырь и желчные протоки

    Кроме самой печени оценивается состояние желчного пузыря и желчных протоков - исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

    Поджелудочная железа

    При исследовании поджелудочной железы оцениваются её размеры, форма, контуры, однородность паренхимы, наличие образований. Качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов.

    Почки и надпочечники , забрюшинное пространство

    Исследование забрюшинного пространства, почек и надпочечников является достаточно трудным для врача ввиду особенностей их расположения, сложности строения и многогранности и неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их количество, расположение, размер, форма, контуры, структура паренхимы и чашечно-лоханочной системы. УЗИ позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

    Щитовидная железа

    В исследовании щитовидной железы ультразвуковое исследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы.

    Кардиология, сосудистая и кардиохирургия

    Эхокардиография (ЭхоКГ) - это ультразвуковая диагностика заболеваний сердца. В этом исследовании оцениваются размеры сердца и его отдельных структур (желудочки, предсердия, межжелудочковая перегородка, толщина миокарда желудочков, предсердий и т. д.), наличие и объём жидкости в перикарде - «сердечной сорочке», состояние клапанов сердца. С помощью специальных расчетов и измерений Эхокардиография позволяет определить массу сердца, сократительную способность сердца - фракцию выброса и т. д. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

    Акушерство, гинекология и пренатальная диагностика

    Ультразвуковое исследование используется для изучения внутренних половых органов женщины, состояния беременной матки, анатомии и мониторинга внутриутробного развития плода.

    Трёхмерное ультразвуковое исследование 29-недельного плода.

    Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки, легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через неё крови, а через 9 - 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвукового исследования можно также определять количество зародышей или констатировать смерть плода.

    Аппарат ультразвуковой диагностики

    Аппарат ультразвуковой диагностики (УЗИ сканер) - прибор, предназначенный для получения информации о расположении, форме и структуре органов и тканей и измерения линейных размеров биологических объектов методом ультразвуковой локации.

    Классификация аппаратов УЗИ

    В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

    • ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);
    • ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца);
    • ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);
    • ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

    В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

    • С - статические;
    • Д - динамические;
    • К - комбинированные.

    Термины, понятия, сокращения

    • Advanced 3D - расширенная программа трёхмерной реконструкции.
    • ATO - автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.
    • B-Flow - визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.
    • Coded Contrast Imaging Option - режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.
    • CodeScan - технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путем создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.
    • Color doppler (CFM или CFA) - цветовой допплер (Color Doppler) - выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика - синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии - цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • DICOM - возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.
    • Easy 3D - режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.
    • M-mode (M-режим) - одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.
    • MPEGvue - быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.
    • Power doppler - энергетический допплер - качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток - отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • Smart Stress - расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.
    • Tissue Harmonic Imaging (THI) - технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) - специализированный инструмент для диагностики и оценки сердечных дисфункций.
    • Tissue Velocity Imaging" - тканевой допплер (Tissue Velocity Imaging или тканевая цветовая допплерография) - цветовое картирование движения тканей, применяется совместно с импульсным допплером в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.
    • TruAccess - подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.
    • TruSpeed - уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.
    • Virtual Convex - расширенное конвексное изображение при использовании линейных и секторных датчиков.
    • VScan - визуализация и квантификация движения миокарда.
    • Импульсный допплер (PW, HFPW) - импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) - ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW - high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.
    • Постоянно-волновой допплер - постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести расчеты давления в полостях сердца и магистральных сосудах в ту или иную фазу сердечного цикла, рассчитать степень значимости стеноза и т. д. Основным уравнением CW является уравнение Бернулли, позволяющее рассчитать разницу давления или градиент давления. С помощью уравнения можно измерить разницу давления между камерами в норме и при наличии патологического, высокоскоростного кровотока.