Основные закономерности процесса вулканизации каучуков различной природы. Технологический процесс вулканизации резины Резина как продукт вулканизации каучука

1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Развитие методов и приборов определения степени вулканизации и вулканизационных характеристик

1.2. Метод вибрационной реометрии

1.3. Возможности использования результатов реометрических испытаний

1.4. Усовершенствованные модели вибрационных реометров

1.5. Математические основы интерпретации кинетических кривых

2. МЕТОДЫ И ОБЪЕКТЫ ИССЛЕДОВАНИЯ

2.1. Программное обеспечение количественной интерпретации кинетических кривых процесса вулканизации

2.1.1. Система Table Curve и ее использование для количественной интерпретации кинетических кривых

2.1.2. Система Table Curve 3D

2.1.3. Характеристика интегрированной системы MatLab

2.2. Объекты исследования 63 ф 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1. Анализ воспроизводимости кинетических кривых процесса вулканизации

3.2 Анализ основных эмпирических моделей для количественной интерпретации кинетических кривых процесса вулканизации

3.2.1. Интегральные кривые

3.2.2. Дифференциальные кривые 100 ^ 3.2.3. Кривые модуля потерь

3.3. Кинетические модели

3.4. Влияние рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации

3.4.1. Температурная зависимость кинетических кривых процесса вулканизации

3.4.2. Влияние рецептурных факторов на характер кинетических кривых процесса вулканизации

Рекомендованный список диссертаций

  • Исследование кинетики вулканизации диеновых каучуков комплексными структурирующими системами 2000 год, кандидат химических наук Молчанов, Владимир Иванович

  • Развитие научных основ технологии по созданию и переработке обувных термопластичных резин методом динамической вулканизации 2007 год, доктор технических наук Карпухин, Александр Александрович

  • Моделирование неизотермической вулканизации автомобильных шин на основе кинетической модели 2009 год, кандидат технических наук Маркелов, Владимир Геннадьевич

  • Алгоритмическо-информационное обеспечение системного анализа автоматизированных химико-технологических процессов структурирования многокомпонентных эластомерных композитов 2017 год, кандидат технических наук Кузнецов, Андрей Сергеевич

  • Автоматизированная система косвенной стабилизации разрывной прочности резинотехнических изделий 2009 год, кандидат технических наук Климов, Антон Павлович

Введение диссертации (часть автореферата) на тему «Количественная интерпретация кинетических кривых процесса вулканизации в системе организации рабочего места технолога-резинщика»

В последние годы появилась целая серия новых программных продуктов, позволяющих технологу решать задачи, постановка которых ранее была невозможна.

Например, методы планирования эксперимента уже давно используются в работах технологов-резинщиков, но наиболее часто применявшиеся приемы описания почти стационарной области опирались исключительно на построение полиномов второй и реже третьей степени. Сейчас такие задачи можно решать гораздо более эффективными способами, получая модели, параметры которых можно интерпретировать на основе физико-химических -представлений.

Появилась также возможность принципиально иного подхода к формированию баз данных, связанных с хранением и использованием информации, необходимой для разработки режимов вулканизации изделий и контроля технологических процессов, и в первую очередь процесса смешения.

Использование новых программных продуктов в работе технолога-резинщика практически избавляет его от необходимости хранения информации на бумажных носителях и может рассматриваться как один из важных компонентов его рабочего места.

Целью диссертационной работы: явилось формирование основных приемов рациональной интерпретации кинетических кривых процесса вулканизации и создание для этого комплекса программ-модулей, позволяющих специалисту работать на действительно современном уровне.

Для достижения этой цели были решены следующие задачи.

Проведение статистического анализа количественных характеристик, получаемых при обработке кинетических кривых процесса вулканизации.

Разработка способа наиболее информативного представления экспериментальных данных при обработке кинетических кривых и написание соответствующей программы.

Рассмотрение возможных вариантов моделей для количественной интерпретации интегральных и дифференциальных кинетических кривых, проведение статистического анализа этих моделей, разработка рекомендаций об условиях их применения и способов построения моделей при наличии процессов вторичного характера, протекающих при вулканизации.

Анализ взаимосвязей параметров этих моделей и вулканизационных характеристик. Разработка на основе этого способов воссоздания кинетической кривой по вулканизационным характеристикам, исключив тем самым необходимость хранения информации на бумажных носителях.

Обоснование необходимости получения дифференциальных кинетических кривых (кривых скорости), анализ возможности классификации этих кривых и эффективности использования статистических моментов для осмысления результатов кинетических исследований.

Проведение сопоставительного анализа реограмм и кривых модуля потерь, оценка возможности предсказания вулканизационных характеристик по кривым модуля потерь.

Анализ возможности получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью?эмпирических моделей. Оценка возможности расчета константы скорости и порядка реакции при такой аппроксимации.

Рассмотрение влияния- рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации и> оценка преимущества применения контурных графиков для анализа этого влияния.

Разработка методов решения перечисленных проблем является актуальной для специалистов резиновой промышленности.

Научная новизна.

1. Впервые показана взаимосвязь параметров моделей- для описания реограмм и кинетических кривых скорости и их связь с вулканизационными характеристиками. На основе этого разработан способ построения кинетических кривых по вулканизационным характеристикам.

2. На основе анализа влияния рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации разработан метод построения контурных графиков, облегчающих принятие решений при планировании новых и оценке существующих режимов вулканизации.

3. Показано, что наряду с вулканизационными характеристиками целесообразно вычислять статистические моменты кривых скорости, которые характеризуют форму кривой в целом, а не фиксируют отдельные точки на этой кривой.

4. Впервые показана возможность получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью эмпирических моделей.

Практическая значимость.

1. На основе разработанного способа адекватного воссоздания кинетической кривой по вулканизационным характеристикам исключается необходимость хранения информации кинетического характера (например, реограмм) на бумажных носителях.

2. Использование контурных графиков в координатах «продолжительность вулканизации - уровень рецептурно-технологического фактора» необходимо для принятия правильных решений при оптимизации рецептуры и планировании новых и оценке существующих режимов вулканизации.

3. Показана целесообразность построения и анализа дифференциальных кинетических кривых скорости, получаемых на реометрах нового поколения, поскольку форма этих кривых в большей степени (по сравнению с реограммами) чувствительна к изменению рецептурно-технологических факторов.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

  • Повышение эффективности теплообменных процессов при термообработке гуммировочных покрытий с использованием СВЧ-энергии 2004 год, кандидат технических наук Шестаков, Демид Николаевич

  • Высокоэластичные композиционные материалы на основе смеси каучуков 2000 год, кандидат химических наук Халикова, Саодатхон

  • Ингредиенты полифункционального действия на основе азометинов для технических резин 2010 год, доктор технических наук Новопольцева, Оксана Михайловна

  • Оптимизация тепловых состояний химически реагирующих твердофазных объектов 1997 год, доктор физико-математических наук Журавлев, Валентин Михайлович

  • Моделирование и расчет нестационарных тепловых процессов индукционного нагрева при производстве резинотехнических изделий 2012 год, кандидат технических наук Карпов, Сергей Владимирович

Заключение диссертации по теме «Технология и переработка полимеров и композитов», Кашкинова, Юлия Викторовна

1. Статистический анализ количественных характеристик, получаемых при обработке реограмм, показал, что эти характеристики определяются с большой дисперсией воспроизводимости. Особенно это касается кинетических параметров, связанных с величиной степени вулканизации (минимальный крутящий момент и его приращение), и в меньшей степени - параметров, связанных с продолжительностью процесса (время начала вулканизации, время 90 и 50% -го превращения).

2. Впервые разработан метод построения контурных 1рафиков, облегчающих принятие решений при планировании новых и оценке существующих режимов вулканизации. Метод основан на создании моделей, характеризующих зависимость степени или скорости вулканизации от времени; параметры этих моделей являются произвольными функциями одного или нескольких рецегпурно-технолошческих факторов. Разработана про1рамма для реализации этого метода.

3. Предложена группа моделей для адекватной количественной интерпретации интегральных и дифференциальных кинетических кривых; параметры этих моделей могут быть истолкованы с позиций физико-химических представлений. В ряде случаев кинетические кривые могут быть описаны путем суммирования таких моделей.

4. Показана взаимосвязь параметров интегральных и дифференциальных моделей между собой и их связь с вулканизационными характеристиками. На основе этого впервые разработан способ адекватного воссоздания кинетической кривой по вулканизационным характеристикам. Это дает возможность исключить необходимость хранения информации на бумажных носителях.

5. Показана целесообразность построения и анализа дифференциальных кинетических кривых скорости процесса вулканизации. Их форма в большей степени чувствительна к изменению рецептурно-технологических факторов, нежели в случае интегральных кривых.

6. На значительном экспериментальном массиве (88 кривых) показано, что дифференциальные кинетические кривые процесса вулканизации при их интерпретации в качестве функций распределения могут быть отнесены к типу IV семейства кривых Пирсона, но в большинстве случаев адекватно описываются моделью 8062 по каталогу программы Table Curve, являющейся дифференциальной формой интегральной модели 8092.

7. Показано, что наряду с вулканизационными характеристиками целесообразно вычислять статистические моменты кривых скорости, которые характеризуют форму кривой в целом, а не фиксируют отдельные точки на этой кривой.

8. Показано, что при отсутствии реверсии вулканизационные характеристики можно вычислить путем анализа кривой модуля потерь.

9. Впервые показана возможность получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью эмпирических моделей. В этом случае константа скорости и порядок реакции могут быть выражены через параметры модели и, следовательно, через вулканизационные характеристики.

10. Рассмотрено влияние рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации и обоснованы преимущества применения контурных графиков для анализа этого влияния. Показано, что результаты кинетических исследований процесса вулканизации целесообразно представлять в виде множества линий равного уровня для ряда вулканизационных характеристик и кинетических параметров. Разработана классификация диаграмм вулканизации на основе теории графов.

Список литературы диссертационного исследования кандидат технических наук Кашкинова, Юлия Викторовна, 2005 год

1. Уральский M.JL, Горелик Р.А., Буканов A.M. Контроль и регулирование технологических свойств резиновых смесей. - Ml: Химия, 1983. - 128 с.

2. Махлис Ф.А., Федюкин Д.Л., Терминологический справочник по резине. -М.: Химия, 1989. -400с.

3. Догадкин Б.А., Донцов А.А., ШершневВ.А. Химия эластомеров. - М.: Химия, 1981.-376 с.

4. Корнев А.Е., Буканов A.M., Шевердяев О.Н. Технология эластомерных материалов. М.: Эксим, 2000. - 288 с.

5. Лукомская А.И., Баденков П.Ф:, Кеперша Л.М. Расчеты и прогнозирование режимов вулканизации резиновых изделий. - М.: Химия, 1978. 280 с.

6. Спутник резинщика. / Под ред. Л.М. Горбунова. Л.: Госхимиздат, 1932. - 464 с.

7. Дж. Р.Скотт Физические испытания каучука и резины.-М.: Химия, 1968.-316 с.

8. Вулканизация эластомеров: Пер. с англ. / Под ред. Г. Аллигера, ф И. Сьетуна. М.: Химия, 1967. - 428 с.

9. ASTM Standart D"412 98а, «Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension.», Annual Book of ASTM Standards, Volume 09.01.

10. Little L. How to- use DSC to measure state-of-cure for elastomers. // Elastomerics. 1988. - 121, № 2. - P. 22-25.

11. Brasier D. W. Applicattions of thermal analytical procedures in the study of elastomers and elastomer systems // Rubber chemistry and technology. - 1980. - 53, № 3 - P.437-511.

12. Берштейн B.A., Егоров B.M. Дифференциальная сканирующая ®1 калориметрия в физикохимии полимеров. Л.: Химия, 1990. - 256 с.

13. Уэндландт У. Термические методы анализа.: Пер. с англ. - М.: Мир, 1978.-526 с.

14. Агаянц И. М., Пять столетий каучука и резины. М.: Модерн, 2002. - 432 с.

15. Новаков И.А., Новопольцева О.М., Кракшин М.А. Методы оценки-и регулирования* пластоэластических и вулканизационных свойств эластомеров и композиций на их основе. - М.: Химия, 2000. - 240с.

16. ГОСТ 10722-76 Каучуки и резиновые смеси. Метод определения вязкости и способности к преждевременной вулканизации. // М.: Изд-вол стандартов. - 1976., 11 с.

17. ASTM D1646-99 Standard Test Methods for Rubber Viscosity, Stress Relaxation, and Pre-Vulcanization Characteristics (Mooney Viscometer). -ASTM International, 10-May-1999,11 p.

18. Орловский П.Н., Лукомская А.И., Цыдзик M.A., Богатова С. К. Оценка технологических свойств сажевых резиновых смесей на сдвиговом пластометре. // Каучук и резина. 1960. - №7. - С. 21-28.

19. Peter J. and Heidemann W. A new method for determining the optimum cure of rubber compounds. // Kautschuk und Gummi. 1958. - №11. - P. 159 - 161.

20. Blow С. M. Rubber technology and manufacture. Institution of rubber Industry: 1971.-527 p.

21. Lautenschlaeger F.K., Myhre M. Classification of properties of elastomers using the «optimum property concept». // Journal of applied polymer science. -1979. 24, № 3 - P. 605-634.

22. Claxton W. E., Conant F. S. and Liska J. W., Evaluation of progressive ф changes in elastomer properties during vulcanization. // Rubber Chemistry and"

23. Technology. 1961. V. 34, P. 777.

24. Decker G. E., Wise R. W., and Guerry D., Ail oscillating disk rheometer for measuring dynamic properties during vulcanization. // Rubber Chemistry and Technology. 1963. V.36, P. 451.

25. Greensmith H.W., Watson A.A. Studies on the curing characteristics of natural rubber. // Proceedings of natural rubber conference. Part II - Kuala Lumpur. -1968 P. 120 - 134.

26. Sezna J.A. The use of processability tests for quality assurance. // Rubber world. 1989. - 199, №4. P. 88-94.

27. ГОСТ 12535-84. Смеси резиновые. Метод определения вулканизационныххарактеристик на вулкаметре. // М.: Изд-во стандартов. -1984.13 с.

28. ASTM Standard 2084-93, Standard Test Method for Rubber Property - Vulcanization Using Oscillating Disk Cure Meter, Appendix X2, History of the Oscillating Disk Cure Meter, Section«X2.6 and Table X2.1.

29. JS JSO 3417-78.Row Rubber Measurement of Cure Characteristics with the Oscillating Curometer.- 1981.

30. ISO 6502 Rubber-Measurement of vulcanization characteristics with rotorless curemetrs. Second edition, 1991.

31. Мак-Келви Д. M. Переработка полимеров: Пер. с англ. М.: Химия, 1968.-496 с.

32. Приборы и методы оценки свойств резиновых смесей, перерабатываемых литьем под давлением / Галле А. П., Конгаров Г. С., Федоров Е. Г. Поздрашенкова Г.И. -М.: ЦЬЖИТЭнефтехим, 1981. -76 с.

33. Алфрей Т. Механические свойства высокополимеров: Пер. с англ. М.:1982.-320 с.

34. Monsnto Rheometer 100, Description and application. Technical Bulletin No IS-1, 18 p.

35. Подалинский A.B., Юрчук Т. E. Ковалев H. В. Об оценке стандартности каучука СКИ-3 методом вулкаметрического анализа. // Каучук и резина.1983. №10. - с.27-32.

36. Kato Н., Fujuta Н Some novel systems for crosslinking polychloroprene. // Rubber Chemistry and Technology 1971. -V. 48. - p. 19-25.

37. Резцова E.B., Виленц Ю: E. Влияние технологических факторов переработки резиновых смесей на основе СКИ-3 и СКМС-ЗОАРКМ-15 на кинетику их вулканизации и динамические характеристики резин.// Каучук и резина. 1971. -№12. - с.15-18.

38. Anand R., Blacly D.C., Lee K.S. Correlation between Monsanto reometer torque and concentration of crosslinks for elastomers networks. International Rubber Conference «Rubbercone», 1982 June 2-4.

39. Вольфсон Б. JI, Горелик Б. М. Кучерский А. М. Определение условно-равновесного модуля резин на вулкаметрах с биконическим ротором. // Каучук и резина.- 1977.-N6.- с. 57-58.

40. Вольфсон Б. Л., Горелик Б. М. Определение модуля сдвига эластомеров на вулкаметрах с биконическим ротором. // Каучук и резина.- 1977.- N1.- С. 51-54.

41. Чарлсби А. Ядерные излучения и полимеры: Пер. с англ. - М.: Издатинлит, 1962. 210 с

42. Подалинский А. В. Федоров Ю. Н. Кропачева Е. Н. Изучение температурной зависимости скорости вулканизации альтернантного сополимера бутадиена с пропиленом. // Каучук и резина, -1982.- N2.- С. 16-19.

43. Догадкин Б. А. Химия эластомеров. М.: Химия, 1972. - 381 с.

44. Юровски В., Кубис Е. Метод определения- параметров процессов структурирования и деструкции резины при вулканизации. //Каучук и резина.-1980.-N8.-C.60-62.

45. Оборудование- для определения характеристик эластомеров и резин фирмы «Goettfert».

46. Web сайт // www.goettfert.com/index.html

47. Мак Кейб К. Усиление эластомеров: Пер. с англ. / Под ред. Дж- Крауса. -М.: 1968.-С. 188-200.

48. Печковская К. А. Сажа как усилитель каучуков. М.: Химия, 1968. - 215с.

49. Rohu C.L., Starita J.N. Using dynamic rheological measurements for real time on-line and off-line quality control. // Rubber world. -1986. -194, № 6. P. 28-33.

50. Захаренко H.B., Козоровицкая Е.И. Палкина Ю.З., Суздальницкая Ж.С. Способы оценки свойств резиновых смесей. ЦНИИТЭнефтехим; серия: производство РТИ и АТИ. Выпуск №3 1988 г., 52 стр.

51. Шевчук В.П., Кракшин М.А., Делаков Е.П., Терехова Е.А. Автоматизированное рабочее место разработчика рецептуры в производстве РТИ. // Каучук и резина. 1987. - №2.-С. 41-43.

52. Сарле X., X. Вандорен П., Вингриф* С.М. Миникомпьютер для технологов резинщиков // Междунар. конф. по каучуку и резине. М.,ф 1984.- С.39.- (Препринты).

53. Смит М. А., Роебух X. Современный контроль качества резиновых смесей.// Междунар. конф. по каучуку и резине.- М., 1984.- С.51,-(Препринты).

54. Pawlowski Н. A. and Perry A. L., «А New Automatic Curemeter» presented at the RPI Rubber Conference 84, Birmingham, U.K., Mar. 1984;

55. Robert I. Barker, David P. King and Henry A. Pawlowski (to Monsanto Co.) U.S. 4,552,025 (Nov. 12,1985);

56. Thomas D. Masters and Henry A. Pawlowski (to Monsanto Co.) U.S. 4,794,788 (Jan. 3, 1989);

57. Ф 55. Henri A. G. Burhin, David P. J. King and Willy A. G. Sprentels (to Monsanto

59. Measuring visco-elastic properties using the MDR 2000 rheometer. Resent advances and applications. Technical notes to the industry. Monsanto instruments and equpment. REF: LLN 89/4.

60. Web-сайт// www.komef.ru/gibrheometre.shtml

61. Оборудование для определения вулканизационных характеристик XDR® Reometers & Viscometers by CCSi. ]

62. Web-сайт// www.ccsi-mc.com/html-instruments.htm

63. Jack С. Warner and Tobin L., «Innovations in Cure Meter and Mooney Viscometer Technology», presented at the 148th meeting of the American Chemical Society in Cleveland, Ohio October 17-20, 1995, Rubber World.1997. - V.215, №4.

64. Andries van Svaaij. The rubber process analyzer 2000. // Natural Rubber. -23, 3-th quarter 2001. - p. 2-4.

65. Роджер Э., Седов A.C., Неклюдов Ю.Г., Производственные версии приборов и программного обеспечения ф. «Альфа Текнолоджис». - XI международная научно-практическая конференция «Резиновая промышленность. Сырье, материалы, технология.» Москва, 2005. 224с.

66. Оборудование фирмы Alpha Technologies.

67. Web-сайт//www.alpha-technologies.com/instruments/rheometry.htm

68. Митропольский А.К. Техника статистических вычислений. - М.: Наука, 1971.-576 с.

69. Агаянц И.М., Орлов A.JI. Планирование эксперимента и анализ данных: методические указания к лабораторным работам. - М.: ИПЦМИТХТ,1998, 143 с.

70. Сиськов В.И. Корреляционный анализ в экономических исследованиях. М.: Статистика, 1975. - 168 с.

71. Браунли К.А. Статистические исследования в производстве: Пер. с англ. / Под ред. А.Н. Колмогорова. М.: Издатинлит, 1949. - 228 с.

72. Лукомский Я.И: Теория корреляции и ее применение к анализу производства. М.: Госстатиздат, 1958. - 388 с.

73. Крамер Г. Математические методы статистики: Пер. с англ. М.: Мир, 1975 .-648 с.

74. Ануфриев И.Е. Самоучитель MatLab 5.3/б.х. СПб.: БХВ-Петербург, 2002.-736 с.

75. КашкиноваТО.В., Агаянц И.М. Формы представления экспериментальных данных при изучении кинетики процесса вулканизации. // 16-й симпозиум «Проблемы шин и резинокордных композитов»: ФГУП «НИИШП» Москва, 2005. - с. 187-194.

76. The Mosanto MDR 2000E in testing of cure kinetics a tools to improve cured rubber article quality H.B. Burhin, Louvain-la-Neuve (Belgium)/ Kautschuk und Gummi, Kunstst. -1992, -45, № 10, -p. 866-870

77. Measuring visco-elastic properties using the MDR 2000 rheometer, Louvain-la-neuve, 1989, 20 p:

78. Вараксин M.E., Кучерский A.M., Кузнечикова В.В., Радаева Г.И. Новые приборы и методы оценки свойств резиновых смесей: серия: производство РТИ и АТИ. Выпуск №3 М., ЦНИИТЭнефтехим, 1989 г. - 126 с.

79. Агаянц И.М., Кашкинова Ю.В. Анализ воспроизводимости реометрических кривых процесса вулканизации. // 9-я научно-практическая конференция «Резиновая промышленность. Сырье и материалы»: ФГУП «НИИШП» Москва, 2002. - с.7-10.

80. Агаянц И.М., Кашкинова Ю.В. Эмпирические модели кинетических кривых процесса вулканизации. // Международная конференция по каучуку и резине: Тез. Докл. Москва, 2004. - с.28-29:

81. Агаянц И.М., Кашкинова Ю.В. Количественная интерпретация кинетических кривых. // Ученые записки МИТХТ. Выпуск 11, 2004. с. 3-8.

82. Кашкинова Ю.В., Агаянц-И.М. Влияние рецептурно-технологических факторов на вулканизационные характеристики и кинетические параметры процесса вулканизации. // Ученые записки МИТХТ. Выпуск 13, 2005. - с. 34-38.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Определение кинетики вулканизации имеет большое значение в производстве резиновых изделий. Вулканизуемость резиновых смесей неидентична их способности к подвулканизации, и для ее оценки необходимы методы, позволяющие определять не только лишь начало (по уменьшению текучести), да и оптимум вулканизации по достижении максимального значения какого-либо показателя, например динамического модуля.39

Обычным методом определения вулканизуемости является изготовление нескольких образцов из одной резиновой смеси, различающихся продолжительностью термообработки, и испытание их, например иа разрывной машине. По окончании испытания строят кривую кинетики вулканизации. Этот метод весьма трудоемок и требует значительной затраты времени.39

Испытания на реометре не дают ответа на все вопросы, и для большей точности результаты определения плотности, предела прочности при растяжении и твёрдости должны быть обработаны статистическими методами и перекрёстно сверены с кривыми кинетики вулканизации . В конце 60-х гг. в связи с разработкой контроля приготовления смесей при помощи реометров началось использование более крупных закрытых резиносмесителей и значительно сократились циклы смешения на некоторых производствах стало возможным выпускать тысячи тонн заправок резиновых смесей в день.

Значительные усовершенствования также отмечались в скорости перемещения материала по заводу. Эти достижения привели к отставанию техники проведения испытаний. Завод, приготовляющий ежедневно 2 тысячи заправок смесей, требует, чтобы бьшо проведено испытание примерно для 00 контрольных параметров (табл. 17.1), предполагая при480

Определение кинетики вулканизации резиновых смесей

При проектировании тепловых режимов вулканизации моделируются одновременно протекающие и взаимосвязанные тепловой (динамическое изменение температурного поля по профилю изделия) и кинетический (формирование степени вулканизации резины) процессы. В качестве параметра для определения степени вулканизации может быть выбран любой физико-механический показатель, для которого имеется математическое описание кинетики неизотермической вулканизации. Однако в силу различий кинетики вулканизации по каждому417


В первой части главы 4 описываются существующие методы оценки эффекта вулканизующего действия переменных по времени температур. Приближенность упрощающих допущений, положенных в основу принятой в промышленности оценки, становится очевидной в свете рассмотрения общих закономерностей изменения свойств резин при вулканизации (кинетики вулканизации по различным показателям свойств, определенных лабораторными методами).

Формирование свойств резин при вулканизации многослойных изделий протекает иначе, чем тонких пластин, используемых для лабораторных механических испытаний из однородного материала. При наличии материалов различной деформируемости большое влияние оказывает сложнонапряженное состояние этих материалов. Вторая часть главы 4 посвящена вопросам механического поведения материалов многослойного изделия в вулканизационных пресс-формах, также способам оценки достигаемых степеней вулканизации резин в изделиях.7
Следует также отметить, что при определении кинетики вулканизации по данному свойству небезразличен режим испытания. Например, стандартная резина из натурального каучука при 100° С имеет иные, чем при 20° С, оптимум, плато и распределение показателей сопротивления разрыву зависимо от степени вулканизации .

Как надо из рассмотрения зависимости основных свойств резины от степени ее поперечного сшивания, проведенного в предыдущем разделе, оценку кинетики и степени вулканизации можно производить различными способами. Применяемые методы делятся на три группы 1) химические методы (определение путем химического анализа резины количества прореагировавшего и непрореагировавшего агента вулканизации) 2) физико-химические методы (определение тепловых эффектов реакции, инфракрасных спектров, хроматографирование, люминесцентный анализ и др.) 3) механические методы (определение механических свойств, в том числе и методами, специально разработанными для определения кинетики вулканизации).

Радиоактивные изотопы (меченые атомы) легко обнаружить, измеряя радиоактивность продукта, в каком они содержатся. Для исследования кинетики вулканизации после определенного времени реагирования каучука с радиоактивной серой (агентом вулканизации) продукты реакции подвергаются холодной непрерывной экстракции бензолом в течение 25 дней. Непрореагировавший агент вулканизации удаляется с экстрактом, а концентрация оставшегося связанного агента определяется по радиоактивности конечного продукта реакции.

Вторая группа методов служит для определения собственно кинетики вулканизации.

ГОСТ 35-67. Резина. Метод определения кинетики вулканизации резиновых смесей .

Развитие в последние годы новых способов полимеризации способствовало созданию типов каучуков, обладающих более совершенными свойствами. Изменения свойств в главном обусловлены различиями в строении молекул каучуков, а это, естественно, повышает роль структурного анализа. Спектроскопическое определение 1,2-, цис-, А- и гране-1,4-структур в синтетических каучуках имеет такое же практическое и теоретическое значение, как и анализ физико-химических и эксплуатационных характеристик полимера. Результаты количественного анализа дают возможность изучить 1) влияние катализатора и условий полимеризации на структуру каучука 2) структуру неизвестных каучуков (идентификация) 3) изменение микроструктуры при вулканизации (изомеризация) и кинетику вулканизации 4) процессы, происходящие при окислительной и термической деструкции каучука (структурные изменения при сушке каучука, старении) 5) влияние стабилизаторов на устойчивость каучукового молекулярного каркаса и процессы, происходящие при прививке и пластификации каучука 6) соотношение мономеров в каучуковых сополимерах и в связи с этим дать качественный вывод о распределении блоков по длинам в сополимерах бутадиена со стиролом (разделение блок- и статистических сополимеров).357

При выборе органических ускорителей вулканизации каучука для промыщленного их использования необходимо принимать во внимание следующее. Ускоритель выбирается для определенного типа каучука, потому что зависимо от типа и строения каучука наблюдается различное влияние ускорителя на кинетику вулканизации.16

Для характеристики кинетики вулканизации на всех стадиях процесса целесообразно наблюдать за изменением эластических свойств смеси. В качестве одного из показателей эластических свойств при испытаниях, осуществляемых в стационарном режиме нагружения, может быть использован динамический модуль.

Подробно об этом показателе и о методах его определения будет сказано в разделе 1 главы IV, посвященном динамическим свойствам резин. Применительно к задаче контроля резиновых смесей по кинетике их вулканизации определение динамического модуля сводится к наблюдению за механическим поведением резиновой смеси, подвергаемой деформации многократного сдвига при повышенной температуре.

Вулканизация сопровождается ростом динамического модуля. Завершение процесса определяется по прекращению этого роста. Таким макаром, непрерывное наблюдение за изменением динамического модуля резиновой смеси при температуре вулканизации может служить основой определения так называемого оптимума вулканизации (по модулю), являющегося одной из важнейших технологических характеристик каждой резиновой смеси.37

В табл. 4 приведены значения температурного коэффициента скорости вулканизации натурального каучука, определенные по скорости связывания серы. Температурный коэффициент скорости вулканизации может быть вычислен также по кинетическим кривым изменения физико-механических свойств каучука при вулканизации при разных температурах, например по величине модуля. Значения коэффициентов, вычисленных по кинетике изменения модуля, приведены в той же таблице.76

Способ определения степени вулканизации (Т) на лимитирующем процесс вулканизации участке изделия. В данном случае различают методы и устройства оптимального управления режимами вулканизации изделий, кинетика неизотермической вулканизации в каких определяется 419

Место определения (Т). Известны методы и устройства, позволяющие определить кинетику неизотермической вулканизации 419

Полученные при помощи описанных методов кинетические кривые используют для расчета таких параметров, как константы скорости, температурные коэффициенты и энергия активации процесса в соответствии с уравнениями формальной кинетики химических реакций. Долгое время считали, что большинство кинетических кривых описывается уравнением первого порядка. Было найдено, что температурный коэффициент процесса равен в среднем 2, а энергия активации меняется от 80 до кДж/моль зависимо от агента вулканизации и молекулярного строения каучука. Однако более точное определение кинетических кривых и их формально-кинетический анализ, проведенный В. Шееле 52, показал, что в почти всех случаях порядок реакции меньше 1 и равен 0,6-0,8, а реакции вулканизации являются сложными и многостадийными.

Кюрометрмодели VIIфирмы Уоллес» (Великобритания) определяет кинетику вулканизации резиновых смесей в изотермических условиях. Образец помещают между плитами, одна из которых смещается на определенный угол. Преимущество такой конструкции заключается в отсутствии пористости в образце, поскольку он находится под давлением, также возможности использования образцов меньшего размера, что сокращает время прогрева.499

Изучение кинетики вулканизации резиновых смесей имеет не только теоретический интерес, но и практическое значение для оценки поведения резиновых смесей при переработке и вулканизации. Для определения режимов технологических процессов в производстве должны быть известны показатели вулканизуе-мости резиновых смесей, т. е. их склонность к преждевременной вулканизации - начало вулканизации и ее скорость (для переработки), а собственно для процесса вулканизации - кроме приведенных показателей - оптимум и плато вулканизации, область реверсии.

Книга составлена на основе лекций, прочитанных для инжене-ров-резинщиков США в Акронском университете ведущими американскими исследователями. Целью этих лекций явилось систематическое изложение имеющихся сведений о теоретических основах и технологии вулканизации в доступном и достаточно полном виде.

В соответствии с этим в начале книги излагается история вопроса и характеристика изменения основных свойств резины, происходящих при вулканизации. Далее при изложении кинетики вулканизации критически рассмотрены химические и физические методы определения скорости, степени и температурного коэффициента вулканизации. Обсуждено влияние на скорость вулканизации размеров заготовки и теплопроводности резиновых смесей.8

Приборы для определения кинетики вулканизации обычно работают либо в режиме заданного амплитудного значения перемещения (вулкаметры, вискюрометры или реометры), либо в режиме заданного амплитудного значения нагрузки (кюрометры, СЕРАН). Соответственно измеряются амплитудные значения нагрузки или перемещения.

Поскольку для лабораторных испытаний обычно применяют образцы 25, заготовленные из пластин толщиной 0,5-2,0 мм, которые вулканизуются практически в изотермических условиях (Г == = onst), то кинетика вулканизации для них измеряется при постоянной температуре вулканизации. На кинетической кривой определяются продолжительность индукционного периода, время начала плато вулканизации, или оптимума, величина плато и другие характерные времена.

Каждому из них отвечают определенные эффекты вулканизации, согласно (4.32). Эквивалентными временами вулканизации будут считаться такие времена которые при температуре 4кв = onst приведут к тем же эффектам, что и при переменных температурах. Таким образом

Если кинетика вулканизации при Г = onst передается уравнением (4.20а), в котором т -время собственно реакции, можно предложить следующий метод определения кинетики неизотермической реакции вулканизации.

Оперативный контроль процесса вулканизации позволяю осуществить специальные приборы для определения кинетики вулка-1 низации — вулкаметры (кюрометры, реометры), непрерывно фиксирующие амплитуды сдвиговой нагрузки (в режиме заданной амплитуды гармонического сдвига) или сдвиговой деформации (в режиме заданной амплитуды сдвиговой нагрузки). Наиболее широко используются приборы вибрационного типа, в частности реометры 100 и 100S фирмы Монсанто, обеспечивающие автоматическое проведение испытаний с получением непрерывной диаграммы изменения свойств смеси в процессе вулканизации согласно ASTM 4-79, МС ISO 3417-77, ГОСТ 35-84.492

Выбор режима отверждения или вулканизации обычно проводят путем исследования кинетики изменения какого-либо свойства отверждаемой системы электрического сопротивления и тангенса угла диэлектрических потерь, прочности, ползучести, модуля упругости при различных видах напряженного состояния, вязкости, твердости, теплостойкости, теплопроводности, набухания, динамических механических характеристик, показателя преломления и целого ряда других параметров, -. Широкое распространение нашли также методы ДТА и ТГА, химического и термомеханического анализа, диэлектрической и механической релаксации, термометрического анализа и дифференциальной сканирующей калориметрии, -.

Все эти методы условно можно разбить на две группы методы, позволяющие контролировать скорость и глубину процесса отверждения по изменению концентрации реакционноспособных функциональных групп, и методы, позволяющие контролировать изменение какого-либо свойства системы и установить его предельное значение. Методы второй группы имеют тот общий недостаток, что то или иное свойство отверждающейся системы ярко проявляется лишь на определенных стадиях процесса так, вязкость отверждающейся системы можно измерять лишь до точки гелеобразования, тогда как большинство физико-механических свойств начинает отчетливо проявляться лишь после точки гелеобразования. С другой стороны, эти свойства сильно зависят от температуры измерения, и если осуществлять непрерывный контроль какого-либо свойства в ходе процесса, когда необходимо для достижения полноты реакции менять и температуру в ходе реакции или реакция развивается существенно неизотермично, то интерпретация результатов измерений кинетики изменения свойства в таком процессе становится уже весьма сложной.37

Исследование кинетики сополимеризации этилена с пропиленом на системе VO I3-А12(С2Н5)зС1д показало, что модифицирование ее тетрагидрофураном позволяет в определенных условиях повысить интегральный выход сополимера. Этот эффект обусловлен тем, что модификатор, изменяя соотношение между скоростями роста и обрыва цепи, способствует образованию сополимеров с более высоким молекулярным весом. Эти же соединения используются в ряде случаев при сополимеризации этилена и пропилена с дициклопентадиеном, норборненом и другими циклодиенами, . Присутствие элект-ронодонорных соединений в сфере реакции при получении ненасыщенных тройных сополимеров предотвращает протекание последующих более медленных реакций сшивки макромолекул и позволяет получить сополимеры, обладающие хорошей способностью к вулканизации.45

Кинетика присоединения серы. Кинетические кривые Вебера, как видно из рис. , имеют вид ломаных линий.

Вебер объяснял такой вид кривых тем, что в отдельные моменты вулканизации образуются различные стехиометрические соединения каучука с серой - сульфиды состава КаЗ, КаЗг. КаЗз и т. д. Каждый из этих сульфидов образуется со свойственной ему скоростью, причем образование сульфида с определенны.м содержанием серы не начинается до тех пор, пока не закончится предыдущая стадия образования сульфида с меньшим числом атомов серы.

Однако позднейшие и более тщательные исследования Спенс и Юнга привели к более простым кинетическим кривым, изображенным на рис. и. Как видно из этих302

Результаты определения структурных параметров вулканизационной сетки методом золь-гель анализа, в частности данные кинетики изменения обшего числа цепей сетки (рис. 6А), показывают, что важнейшей особенностью дитиодиморфолиновых вулканизатов является значительно меньшая реверсия и, как следствие этого, меньшее снижение прочностных свойств вулканизатов с повышением температуры вулканизации. На рис. 6Б показана кинетика изменения сопротивления разрыву смесей при309

Научные Нубы — "Кинетический песок"

Вот те раз, слушай музыку у нас , блин давай к нам у нас есть все, что тебе необходимо друг, подружка! Новинки песен, концерты и клипы, популярные релизы, соберись и вперед на сайт muzoic.com. Только у нас столько музыки , что голова кругом, что же слушать!

Рубрики

Выберите рубрику 1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ, ПРИРОДНОГО ГАЗА 3. ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ И ЭКСПЛУАТА 3.1. Фонтанная эксплуатация нефтяных скважин 3.4. Эксплуатация скважин погружными электроцентробежны 3.6. Понятие о разработке нефтяных и газовых скважин 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА ОСНОВНЫЕ УЗЛЫ ИСПЫТАТЕЛЯ ПЛАСТОВ ВИНТОВЫЕ ЗАБОЙНЫЕ ДВИГАТЕЛИ АВАРИЙНЫЕ И ОСОБЫЕ РЕЖИМЫ РАБОТЫ ЭЛЕКТРООБОРУДОВАНИЯ АГРЕГАТЫ ДЛЯ РЕМОНТА И БУРЕНИЯ СКВАЖИН АНАЛИЗ ПРИЧИН МАЛОДЕБИТНОСТИ СКВАЖИН АНАЛИЗ ТЕХНОЛОГИЙ КАПИТАЛЬНЫХ РЕМОНТОВ СКВАЖИН Арматура устьевая АСФАЛЬТОСМОЛО-ПАРАФИНОВЫЕ ОТЛОЖЕНИЯ Без рубрики БЕЗДЫМНОЕ СЖИГАНИЕ ГАЗА БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ блогун БЛОКИ ЦИРКУЛЯЦИОННЫХ СИСТЕМ. борьба с гидратами БОРЬБА С ОТЛОЖЕНИЕМ ПАРАФИНА В ПОДЪЕМНЫХ ТРУБАХ бурение Бурение боковых стволов БУРЕНИЕ НАКЛОННО НАПРАВЛЕННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН Бурение скважин БУРИЛЬНАЯ КОЛОННА БУРОВЫЕ АВТОМАТИЧЕСКИЕ СТАЦИОНАРНЫЕ КЛЮЧИ БУРОВЫЕ АГРЕГАТЫ И УСТАНОВКИ ДЛЯ ГЕОЛОГО-РАЗВЕДОЧНОГО БУРЕНИЯ БУРОВЫЕ ВЫШКИ БУРОВЫЕ НАСОСЫ БУРОВЫЕ НАСОСЫ БУРОВЫЕ РУКАВА БУРОВЫЕ УСТАНОВКИ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ (ММП) ВЕНТИЛИ. ВИДЫ НЕОДНОРОДНОСТЕЙ СТРОЕНИЯ НЕФТЯНЫХ ЗАЛЕЖЕЙ Виды скважин ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ ВЛАГОСОДЕРЖАНИЕ И ГИДРАТЫ ПРИРОДНЫХ ГАЗОВ СОСТАВ ГИДРАТ Влияние различных факторов на характеристики ВЗД ВОПРОСЫ ОПТИМИЗАЦИИ РАБОТЫ СИСТЕМЫ ПЛАСТ — УЭЦН ВЫБОР ОБОРУДОВАНИЯ И РЕЖИМА РАБОТЫ УЭЦН ВЫБОР СТАНКА-КАЧАЛКИ Газлифтная установка ЛН Газлифтная эксплуатация нефтяных скважин Газлифтный способ добычи нефти ГАЗЫ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ И ИХ СВОЙСТВА ГИДРАТООБРАЗОВАНИЕ В ГАЗОКОНДЕНСАТНЫХ СКВАЖИНАХ ГИДРАТООБРАЗОВАНИЕ В СИСТЕМЕ СБОРА НЕФТИ гидрозащита погружного электродвигателя ГИДРОКЛЮЧ ГКШ-1500МТ гидропоршневой насос Глава 8. СРЕДСТВА И МЕТОДЫ ГРАДУИРОВКИ И ПОВЕРКИ РАСХОДОИЗМЕРИТЕЛЬНЫХ СИСТЕМ ГЛУБИННЫЕ НАСОСЫ Горизонтальное бурение ГОРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН ГРАНУЛОМЕТРИЧЕСКИЙ (МЕХАНИЧЕСКИЙ) СОСТАВ ПОРОД ДАЛЬНИЙ ТРАНСПОРТ НЕФТИ И ГАЗА ДЕФОРМАЦИОННЫЕ МАНОМЕТРЫ Диафрагменные электронасосы ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЙ АГРЕГАТ САТ-450 ДИЗЕЛЬНЫЕ И ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЕ АГРЕГАТЫ ДИНАМОМЕТРИРОВАНИЕ УСТАНОВОК ДНУ С ЛМП КОНСТРУКЦИИ ОАО «ОРЕНБУРГНЕФТЬ» добыча нефти добыча нефти в осложненых условиях ДОБЫЧА НЕФТИ С ПРИМЕНЕНИЕМ ШСНУ ЖИДКОСТНЫЕ МАНОМЕТРЫ ЗАБОЙНЫЕ ДВИГАТЕЛИ Закачка растворов кислот в скважину ЗАПОРНАЯ АРМАТУРА. ЗАЩИТа НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ КОРРОЗИИ ЗАЩИТА ОТ КОРРОЗИИ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ИЗМЕНЕНИЕ КУРСА СТВОЛА СКВАЖИНЫ измерение давления, расхода, жидкости, газа и пара ИЗМЕРЕНИЕ КОЛИЧЕСТВА ЖИДКОСТЕЙ И ГАЗОВ ИЗМЕРЕНИЕ РАСХОДА ЖИДКОСТЕЙ, ГАЗОВ И ПАРОВ ИЗМЕРЕНИЕ УРОВНЯ ЖИДКОСТЕЙ ИЗМЕРЕНИЯ ПРОДУКЦИИ МАЛОДЕБИТНЫХ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В НЕФТЕГАЗОДОБЫЧЕ ИСПЫТАНИЕ СКВАЖИННЫХ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ Исследование глубинно-насосных скважин ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ кабель УЭЦН капитальный ремонт скважин Комплекс оборудования типа КОС и КОС1 КОНСТРУКЦИЯ ВИНТОВОГО ШТАНГОВОГО НАСОСА КОНСТРУКЦИЯ КЛАПАННОГО УЗЛА коррозия Краны. КРЕПЛЕНИЕ СКВАЖИН КТППН МАНИФОЛЬДЫ Маятниковая компоновка Меры безопасности при приготовлении растворов кислоты МЕТОДИКА РАСЧЕТА БУРИЛЬНЫХ КОЛОНН МЕТОДЫ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА В ФОНТАННЫХ СКВАЖИНАХ Методы воздействия на призабойную зону для увеличения нефтеотдачи пластов МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТЕЙ Методы изучения разрезов скважин. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ МЕТОДЫ УДАЛЕНИЯ СОЛЕЙ МЕХАНИЗМЫ ПЕРЕДВИЖЕНИЯ И ВЫРАВНИВАНИЯ БУРОВЫХ УСТАНОВОК МЕХАНИЗМЫ ПЕРЕМЕЩЕНИЯ И ВЫРАВНИВАНИЯ МЕХАНИЗМЫ ПРИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ ПРИ БУРЕНИИ НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА УСТАНОВКУ Наземное оборудование Насосная эксплуатация скважин НАСОСНО-КОМПРЕССОРНЫЕ ТРУБЫ неоднородный пласт Нефть и нефтепродукты Новости портала НОВЫЕ ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРОЦЕССОВ ДОБЫЧИ ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН ОБОРУДОВАНИЕ ДЛЯ МЕХАНИЗАЦИИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ Оборудование для нефти и газа ОБОРУДОВАНИЕ ДЛЯ ОДНОВРЕМЕННОЙ РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦ ОБОРУДОВАНИЕ ДЛЯ ПРЕДУСМОТРЕНИЯ ОТКРЫТЫХ ФОНТАНОВ ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ Оборудование ствола скважины, законченной бурением ОБОРУДОВАНИЕ УСТЬЯ КОМПРЕССОРНЫХ СКВАЖИН ОБОРУДОВАНИЕ УСТЬЯ СКВАЖИНЫ Оборудование устья скважины для эксплуатации УЭЦН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН обработка призабойной зоны ОБРАЗОВАНИЕ ГИДРАТОВ И МЕТОДЫ БОРЬБЫ С НИМИ ОБРАЗОВАНИЕ КРИСТАЛЛОГИДРАТОВ В НЕФТЯНЫХ СКВАЖИНАХ ОБЩИЕ ПОНЯТИЯ О ПОДЗЕМНОМ И КАПИТАЛЬНОМ РЕМОНТЕ ОБЩИЕ ПОНЯТИЯ О СТРОИТЕЛЬСТВЕ СКВАЖИН ОГРАНИЧЕНИЕ ПРИТОКА ПЛАСТОВЫХ ВОД Опасные и вредные физические факторы ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ВЫХОДЕ НАСОСА ОПРОБОВАНИЕ ПЕРСПЕКТИВНЫХ ГОРИЗОНТОВ ОПТИМИЗАЦИЯ РЕЖИМА РАБОТЫ ШСНУ ОПЫТ ЭКСПЛУАТАЦИИ ДНУ С ГИБКИМ ТЯГОВЫМ ЭЛЕМЕНТОМ ОСВОЕНИЕ И ИСПЫТАНИЕ СКВАЖИН ОСВОЕНИЕ И ПУСК В РАБОТУ ФОНТАННЫХ СКВАЖИН ОСЛОЖНЕНИЯ В ПРОЦЕССЕ УГЛУБЛЕНИЯ СКВАЖИНЫ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ СВЕДЕНИЯ О НЕФТЯНЫХ, ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫ ОСНОВЫ ГИДРАВЛИЧЕСКИХ РАСЧЕТОВ В БУРЕНИИ ОСНОВЫ НЕФТЕГАЗОДОБЫЧИ ОСНОВЫ ПРОЕКТИРОВАНИЯ НАПРАВЛЕННЫХ СКВАЖИН ОСНОВЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ОЧИСТКА БУРЯЩЕЙСЯ СКВАЖИНЫ ОТ ШЛАМА ОЧИСТКА ПОПУТНЫХ ГАЗОВ пайка и наплавка ПАКЕР ГИДРОМЕХАНИЧЕСКИЙ ДВУХМАНЖЕТНЫЙ ПГМД1 ПАКЕРЫ ГИДРОМЕХАНИЧЕСКИЕ, ГИДРАВЛИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПАКЕРЫ ДЛЯ ИСПЫТАНИЯ КОЛОНН ПАКЕРЫ РЕЗИНОВО-МЕТАЛЛИЧЕСКОГО ПЕРЕКРЫТИЯ ПРМП-1 ПАКЕРЫ И ЯКОРИ ПАРАМЕТРЫ И КОМПЛЕКТНОСТЬ ЦИРКУЛЯЦИОННЫХ СИСТЕМ Параметры талевых блоков для работы с АСП ПЕРВИЧНОЕ ВСКРЫТИЕ ПРОДУКТИВНЫХ ПЛАСТОВ ПЕРВИЧНЫЕ СПОСОБЫ ЦЕМЕНТИРОВАНИЯ ПЕРЕДВИЖНЫЕ НАСОСНЫЕ УСТАНОВКИ И АГРЕГАТЫ ПЕРЕРАБОТКА ЛОВУШЕЧНЫХ НЕФТЕЙ (НЕФТЕШЛАМОВ) ПЕРИОДИЧЕСКИЙ ГАЗЛИФТ ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДНУ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ШСНУ Погружение насосов под динамический уровень Подземное оборудование фонтанных скважин ПОДЪЕМ ВЯЗКОЙ ЖИДКОСТИ ПО ЗАТРУБНОМУ ПРОСТРАНСТВУ СКВАЖИНЫ ПОРОДОРАЗРУШАЮЩИЕ ИНСТРУМЕНТЫ ПОРШНЕВЫЕ МАНОМЕТРЫ Потери давления при движении жидкости по нкт Правила безопасности при эксплуатации скважин Правила ведения ремонтных работ в скважинах РД 153-39-023-97 ПРЕДУПРЕЖДЕНИЕ ОБРАЗОВАНИЯ СОЛЕЙ ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО при работе ШГН ПРЕИМУЩЕСТВА ДЛИННОХОДОВЫХ Приготовление растворов кислот. ПРИГОТОВЛЕНИЕ, ОЧИСТКА БУРОВЫХ РАСТВОРОВ ПРИМЕНЕНИЕ СТРУЙНЫХ КОМПРЕССОРОВ ДЛЯ УТИЛИЗАЦИИ ПРИМЕНЕНИЕ УЭЦН В СКВАЖИНАХ ОАО «ОРЕНБУРГНЕФТЬ» ПРИНЦИП ДЕЙСТВИЯ И ОСОБЕННОСТИ КОНСТРУКЦИИ ДНУ С ЛМП ПРИЧИНЫ И АНАЛИЗ АВАРИЙ ПРОГНОЗИРОВАНИЕ ОТЛОЖЕНИЯ НОС ПРИ ДОБЫЧЕ НЕФТИ ПРОЕКТИРОВАНИЕ ТРАЕКТОРИИ НАПРАВЛЕННЫХ СКВАЖИН ПРОЕКТИРОВАНИЕ, ОБУСТРОЙСТВО И АНАЛИЗ РАЗРАБОТКИ УГЛЕВОДОРОДНЫХ МЕСТОРОЖДЕНИЙ Производительность насоса ПРОМЫВКА СКВАЖИН И БУРОВЫЕ РАСТВОРЫ ПРОМЫСЛОВЫЕ ИССЛЕДОВАНИЯ ПРОМЫСЛОВЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗОН ОБРАЗОВАНИЯ НОС ПРОМЫСЛОВЫЙ СБОР И ПОДГОТОВКА НЕФТИ, ГАЗА И ВОДЫ ПРОТИВОВЫБРОСОВОЕ ОБОРУДОВАНИЕ ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ СКВАЖИН РАЗМЕЩЕНИЕ ЭКСПЛУАТАЦИОННЫХ И НАГНЕТАТЕЛЬНЫХ СКВАЖИН НА Разное РАЗРУШЕНИЕ ГОРНЫХ ПОРОД РАСПРЕДЕЛЕНИЕ ОБРЫВОВ ПО ДЛИНЕ КОЛОННЫ ШТАНГ РАСЧЕТ ДНУ РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ДНУ Регулирование свойств цементного раствора и камня с помощью реагентов Режимы добывающих и нагнетательных скважин. РЕЗЕРВЫ СНИЖЕНИЯ ЭНЕРГОПОТРЕБЛЕНИЯ ПРИ ЭКСПЛУАТАЦИ РЕМОНТЫ ПО ЭКОЛОГИЧЕСКОМУ ОЗДОРОВЛЕНИЮ ФОНДА СКВАЖИН РОЛЬ ФОНТАННЫХ ТРУБ САМОХОДНЫЕ УСТАНОВКИ С ПОДВИЖНЫМ… СЕТКА РАЗМЕЩЕНИЯ СКВАЖИН СИСТЕМЫ УЛАВЛИВАНИЯ ЛЕГКИХ УГЛЕВОДОРОДОВ Скважинные уплотнители (пакеры) Скважинные центробежные насосы для добычи нефти СОСТАВ И НЕКОТОРЫЕ СВОЙСТВА ВОД НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ СПЕЦИАЛЬНЫЙ НЕВСТАВНОЙ ШТАНГОВЫЙ НАСОС СПОСОБЫ ДОБЫЧИ НЕФТИ, ПРИМЕНЯЕМЫЕ НА МЕСТОРОЖДЕНИЯХ ОАО СПОСОБЫ ОЦЕНКИ СОСТОЯНИЯ ПЗП СРАВНИТЕЛЬНЫЕ ИСПЫТАНИЯ НАСОСНЫХ УСТАНОВОК СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ГАЗОВ СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ЖИДКОСТЕЙ СТАДИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ Станки-качалки Струйные насосы струйный насос СЧЕТЧИКИ КОЛИЧЕСТВА ГАЗОВ СЧЕТЧИКИ КОЛИЧЕСТВА ЖИДКОСТЕЙ ТАЛЕВЫЕ МЕХАНИЗМЫ ТЕМПЕРАТУРА И ДАВЛЕНИЕ В ГОРНЫХ ПОРОДАХ И СКВАЖИНАХ Теоретические основы безопасности ТЕХНИКА ИЗМЕРЕНИЯ РАСХОДА Техническая физика ТРАЕКТОРИЮ ПЕРЕМЕЩЕНИЯ ЗАБОЯ СКВАЖИНЫ Трубы УКАЗАНИЯ ПО РАСЧЕТУ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ УСЛОВИЯ ПРИТОКА ЖИДКОСТИ И ГАЗА В СКВАЖИНЫ Установки гидропоршневых насосов для добычи нефти Установки погружных винтовых электронасосов Установки погружных диафрагменных электронасосов Устьевое оборудование УТЯЖЕЛЕННЫЕ БУРИЛЬНЫЕ ТРУБЫ УЭЦН уэцн полностью ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИНТЕНСИВНОСТЬ ОБРАЗОВАНИЯ АСПО Физико-механические свойства пород-коллекторов ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ ФИЛЬТРЫ Фонтанный способ добычи нефти ЦЕМЕНТИРОВАНИЕ СКВАЖИН ЦИРКУЛЯЦИОННЫЕ СИСТЕМЫ БУРОВЫХ УСТАНОВОК Шлакопесчаные цементы Шлакопесчаные цементы совместного помола Штанги насосные (ШН) ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ) ШТАНГОВЫЕ НАСОСЫ ДЛЯ ПОДЪЕМА ВЯЗКОЙ НЕФТИ ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСЫ Штанговые скважинные насосы ШСН ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН эксплуатация малодебитных скважин ЭКСПЛУАТАЦИЯ МАЛОДЕБИТНЫХ СКВАЖИН НА НЕПРЕРЫВНОМ РЕЖИМЕ ЭКСПЛУАТАЦИЯ ОБВОДНЕННЫХ ПАРАФИНСОДЕРЖАЩИХ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН УЭЦН ЭЛЕКТРОДЕГИДРАТОР. ЭЛЕКТРОДИАФРАГМЕННЫЙ НАСОС энергосбережение скважинного электронасосного агрегата ЯКОРИ

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Вулканизация элементарной серой.

1.1.1. Взаимодействие серы с ускорителями и активаторами.

1.1.2. Вулканизация каучука серой без ускорителя.

1.1.3. Вулканизация каучука серой в присутствии ускорителя.

1.1.4. Механизм отдельных стадий серной вулканизации в присутствии ускорителей и активаторов.

1.1.5. Вторичные реакции полисульфидных поперечных связей. Явления поствулканизации (перевулканизации) и реверсии.

1.1.6. Кинетическое описание процесса серной вулканизации.

1.2. Модификация эластомеров химическими реагентами.

1.2.1. Модификация фенолами и донорами метиленовых групп.

1.2.2. Модификация полигалоидными соединениями.

1.3. Структурирование циклическими производными тиомочевины.

1.4 Особенности структуры и вулканизации смесей эластомеров.

1.5. Оценка кинетики неизотермической вулканизации в изделиях.

2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. Объекты исследования

2.2. Методы исследования.

2.2.1. Исследование свойств резиновых смесей и вулканизатов.

2.2.2. Определение концентрации поперечных связей.

2.3. Синтез гетероциклических производных тиомочевины.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ

РЕЗУЛЬТАТОВ

3.1. Изучение кинетических особенностей формирования вулканизационной сетки под действием серных вулканизующих систем.

3.2. Влияние модификаторов на структурирующее действие серных вулканизующих систем.

3.3 Кинетика вулканизации резиновых смесей на основе разнополярных каучуков.

3.4. Проектирование процессов вулканизации эластомерных изделий.

Рекомендованный список диссертаций

  • Разработка и исследование свойств резин на основе полярных каучуков, модифицированных полигидрофосфорильными соединениями, для изделий нефтебуровой техники 2001 год, кандидат технических наук Куцов, Александр Николаевич

  • Ингредиенты полифункционального действия на основе азометинов для технических резин 2010 год, доктор технических наук Новопольцева, Оксана Михайловна

  • Получение, свойства и применение эластомерных композиций, вулканизованных динитрозогенерирующими системами 2005 год, кандидат технических наук Макаров, Тимофей Владимирович

  • Физико-химическое модифицирование поверхностных слоев эластомеров при формировании композиционных материалов 1998 год, доктор технических наук Елисеева, Ирина Михайловна

  • Развитие научных основ технологии по созданию и переработке обувных термопластичных резин методом динамической вулканизации 2007 год, доктор технических наук Карпухин, Александр Александрович

Введение диссертации (часть автореферата) на тему «Исследование кинетики вулканизации диеновых каучуков комплексными структурирующими системами»

Качество резиновых изделий неразрывно связано с условиями формирования в процессе вулканизации оптимальной структуры пространственной сетки, позволяющей максимально реализовать потенциальные свойства эластомерных систем. В работах Б. А. Догадкина, В. А. Шершнева, Е. Э. Потапова, И. А. Туторского, JI. А. Шуманова, Тарасовой З.Н., Донцова A.A., W. Scheele, A.Y. Coran и др. ученых установлены основные закономерности течения процесса вулканизации, основанные на существовании сложных, параллельно-последовательных реакций сшивания эластомеров с участием низкомолекулярных веществ и активных центров - действительных агентов вулканизации.

Актуальными являются работы, продолжающие это направление, в частности в области описания вулканизационных характеристик эластомерных систем, содержащих комбинации ускорителей, агентов вулканизации, вторичных структурирующих агентов и модификаторов, совулканизации смесей каучуков. Различным подходам в количественном описании сшивания каучуков уделено достаточно внимания, однако изыскание схемы, которая максимально учитывает теоретическое описание кинетики действия структурирующих систем и экспериментальные данные заводских лабораторий, полученные в различных температурно-временных условиях, является актуальной задачей.

Это обусловливается большой практической значимостью методов расчета скорости и параметров процесса неизотермической вулканизации эластомерных изделий, в том числе методом компьютерного проектирования по данным ограниченного лабораторного эксперимента. Решение проблем, позволяющих достигать оптимальные эксплуатационные свойства в ходе производственных процессов вулканизации шин и резинотехнических изделий, в значительной степени зависит с совершенствованием методов математического моделирования неизотермической вулканизации применяемых в системах автоматизированного управления.

Рассмотрение проблем серной вулканизации, определяющих физико-химические и механические свойства вулканизатов, касающиеся кинетики и механизма реакции формирования и распада структуры поперечных связей вулканизационной сетки имеет очевидное практическое значение для всех специалистов связанных с переработкой каучуков общего назначения.

Возросший уровень упруго - прочностных, адгезионных свойств резин, диктуемый современными тенденциями в конструировании, не может быть достигнут без широкого применения в рецептуре модификаторов полифункционального действия, являющихся, как правило, вулканизующими соаген-тами, оказывающих влияние на кинетику серной вулканизации, характер образующейся пространственной сетки.

Исследование и расчет процессов вулканизации в настоящее время базируется во многом на экспериментальном материале, эмпирических и графоаналитических методах расчетов, которые до настоящего времени не нашли достаточного обобщенного анализа. Во многих случаях вулканизацион-ная сетка образована химическими связями нескольких типов неоднородно распределенными между фазами. В тоже время сложные механизмы межмолекулярного взаимодействия компонентов с образованием физических, координационных и химических связей, образования нестабильных комплексов и соединений, крайне осложняют описание процесса вулканизации, приводя многих исследователей к построению аппроксимаций для узких интервалов варьирования факторов.

Целью работы является исследование, уточнение механизма и кинетики нестационарных процессов, протекающих при вулканизации эластомеров и их смесей, разработка адекватных методов математического описания процесса вулканизации многокомпонентными модифицирующими структурирующими системами, в том числе шин и многослойных резинотехнических изделий, установление факторов, влияющих на отдельные стадии процесса в присутствии вторичных структурирующих систем. Разработка на этой основе методик вариантно-оптимизационных расчетов вулканизационных характеристик композиций на основе каучуков и их комбинаций, а также параметров их вулканизации.

Практическая значимость. Многокритериальная задача оптимизации впервые сводится к решению обратной кинетической задачи с применением 6 методов планирования кинетических экспериментов. Разработаны модели, позволяющие целенаправленно оптимизировать состав структурно-модифицирующих систем конкретных шинных резин и достигать максимальный уровень упруго-жесткостных свойств в готовых изделиях.

Научная новизна. Многокритериальная задача оптимизации процесса вулканизации и прогнозирования качества готовой продукции предлагается решения обратной химической задачи с применением методов планирования кинетических экспериментов. Определение параметров процесса вулканизации позволяет эффективно проводить управление и регулирование в нестационарной области

Апробация работы проводилась на Российских научных конференциях в Москве (1999), Екатеринбурге (1993), Воронеже (1996) и научно-технических конференциях ВГТА 1993-2000 годов.

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

  • Моделирование неизотермической вулканизации автомобильных шин на основе кинетической модели 2009 год, кандидат технических наук Маркелов, Владимир Геннадьевич

  • Физико-химические основы и активирующие компоненты вулканизации полидиенов 2012 год, доктор технических наук Карманова, Ольга Викторовна

  • Шунгит - новый ингредиент для резиновых смесей на основе хлорсодержащих эластомеров 2011 год, кандидат химических наук Артамонова, Ольга Андреевна

  • Экологическая оценка и способы снижения эмиссии ускорителей серной вулканизации каучуков в производстве резиновых изделий 2011 год, кандидат химических наук Закиева, Эльмира Зиряковна

  • Вулканизация резиновых смесей с использованием оксидов металлов различного типа и качества 1998 год, кандидат технических наук Пугач, Ирина Геннадьевна

Заключение диссертации по теме «Технология и переработка полимеров и композитов», Молчанов, Владимир Иванович

1. Теоретически и практически обоснована схема, описывающая закономерности серной вулканизации диеновых каучуков, на основе дополнения известных уравнений теории индукционного периода реакциями образования, деструкции полисульфидных связей и модификации макромолекул эластомеров. Предложенная кинетическая модель позволяет описать периоды: индукционный, сшивания и реверсии вулканизации резин на основе изопренового и бутадиеновых каучуков и их комбинаций в присутствии серы и сульфенамидов, влияние температуры на модули вулканизатов.

2. Рассчитаны константы и энергии активации всех стадий процесса серной вулканизации в предложенной модели путем решения обратных кинетических задач полиизотермным методом, и отмечено их хорошее совпадение с литературными данными полученными другими методами. Соответствующий выбор параметров модели позволяет описать с ее помощью основные типы кинетических кривых.

3. На основе анализа закономерностей образования и деструкции сетки поперечных связей дано описание зависимости скорости процесса вулканизации эластомерных композиций от состава структурирующих систем.

4. Определены параметры уравнений предложенной схемы реакций для описания серной вулканизации в присутствии модификатора РУ и гексола. Установлено, что с увеличением относительной концентрации модификаторов возрастает содержание и скорость образования стабильных поперечных связей. Использование модификаторов не оказывает значимого влияния на образование полисульфидных связей. Скорость распада полисульфидных узлов вулканизационной сетки не зависит от концентрации компонентов структурирующей системы.

5. Установлено, что зависимости крутящего момента, измеренного на реометре, и условного напряжения при низких удлинениях от соотношения полихлоропренового и бутадиен-стирольного каучуков в эластомерных композициях свулканизованных, наряду с металлооксидной, серной вулканизующими системами, не всегда могут быть описаны гладкой кривой. Лучшая оценка зависимости условного напряжения от соотношения фаз каучуков в композиции, полученной при использовании в качестве ускорителя альтакса, описывается кусочно-непрерывной аппроксимацией. При средних значениях объемных соотношений фаз (а = 0,2 - 0,8) использовано уравнение Дэвиса для взаимопроникающих полимерных сеток. При концентрациях ниже порога перколяции (а =0,11 - 0,19) эффективные модули композиции вычисляли по уравнению Такаянаги основанному на представлении о параллельном расположении анизотропных элементов дисперсной фазы в матрице.

6. Показано, что циклические производные тиомочевины увеличивают число связей на границе раздела эластомерных фаз, условное напряжение при удлинении композиции и изменяют характер зависимости модуля от соотношения фаз по сравнением с альтаксом. Лучшая оценка концентрационной зависимости условного напряжения получена с использовании логистической кривой при низкой плотности поперечных связей и логарифмической кривой - при высоких.

8. Разработаны модульные программы для расчета кинетических констант по предложенным моделям, расчета температурных полей и степени вулканизации в толстостенных изделиях. Разработанный пакет программ позволяет выполнять расчеты технологических режимов вулканизации на стадии проектирования изделия и создания рецептур.

9. Разработаны методики расчета процессов нагрева и вулканизации многослойных резиновых изделий по вычисленным кинетическим константам предложенных кинетических моделей вулканации.

Точность совпадения расчетных и экспериментальных данных соответствует предъявляемым требованиям.

Список литературы диссертационного исследования кандидат химических наук Молчанов, Владимир Иванович, 2000 год

1. Догадкин Б.А., Донцов A.A., Шершнев В.А. Химия эластомеров.1. М.:Химия, 1981.-376 с.

2. Донцов A.A. Процессы структурирования эластомеров.- М.:Химия,1978.-288 с.

3. Кузьминский A.C., Кавун С.М., Кирпичев В.П. Физико-химическиеосновы получения, переработки и применения эластомеров.-М.:Химия, 1976.- 368 с.

4. Шварц А.Г., Фроликова В.Г., Кавун С.М., Алексеева И.К. Химическая модификация резин // В сб. научн. трудов "Пневматические шины из синтетического каучука" -М.: ЦНИИТЭнефтехим.-1979.- С.90

5. Мухутдинов А. А. Модификация серных вулканизующих системи ихкомпонентов: Тем. обзор.-М.:ЦНИИТЭнефтехим.-1989.-48 с.

6. Гаммет Л. Основы физической органической химии.1. М.:Мир, 1972.- 534 с.

7. Гофманн В. Вулканизация и вулканизующие агенты.-Л.: Химия,1968.-464 с.

8. Campbell R. Н., Wise R. W. Vulcanization. Part 1. Fate of Curing

9. System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives//Rubber Chem. and Technol.-1964.-V. 37, N 3.- P. 635-649.

10. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Материалы и технология резиновогопроизводства.- М.,1984. Препринт А4930 (Межд. конф. по каучукуи резине. Москва, 1984 г.)

11. Sheele W., Kerrutt G. Vulcanization of Elastomers. 39. Vulcanization of

12. Natural Rubber and Synthetic Rubber by Sulfer and Sulfenamide. II //Rubber Chem. and Technol.-1965.- V. 38, N 1.- P.176-188.

13. Кулезнев B.H. // Коллоид, журнал.- 1983.-T.45.-N4.-C.627-635.

14. MoritaE., Young E. J. //Rubber Chem. and TechnoL-1963.-V. 36, N 4.1. P. 834-856.

15. Лыкйн A.C. Исследование влияния структуры вулканизационной сетки на эластичность и прочностные свойства резин// Коллоид.журнал.-1964.-Т.ХХУ1.-М6.-С.697-704.

16. Донцов A.A., Тарасова З.Н., Шершнев В.А. // Коллоид, журнал.1973.-T.XXXV.- N2.-C.211-224.

17. Донцов A.A., Тарасова З.Н., Анфимов Б.Н., Ходжаева И.Д. //Докл.

18. АН CCCP.-1973.-T.213.-N3.-C.653 656.

19. Донцов A.A., ЛякинаС.П., Добромыслова A.B. //Каучук и резина.1976.-N6.-C.15-18.

20. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Журн. Всес. хим. общ. им. Д.И.Менделеева, 1986.-T.XXXI.-N1.-C.65-68.

21. Мухутдинов А.А., Зеленова В.Н. Использование вулканизующей системы в виде твердого раствора. // Каучук и резина. 1988.-N7.-С.28-34.

22. Мухутдинов А.А., Юловская В.Д., Шершнев В.А., Смольянинов С.А.

23. О возможности уменьшения дозировки оксида цинка в рецептуре резиновых смесей. // Там же.- 1994.-N1.-C.15-18.

24. Campbell R. Н., Wise R. W. Vulcanization. Part 2. Fate of Curing System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives //Rubber Chem. and Technol.-1964.- V. 37, N 3.- P. 650-668.

25. ТарасовД.В., Вишняков И.И., Гришин B.C. Взаимодействие сульфенамидных ускорителей с серой в температурных условиях, моделирующих режим вулканизации.// Каучук и резина.-1991.-№5.-С 39-40.

26. Гонтковская В.Т., Перегудов А.Н., Гордополова И.С. Решение обратных задач теории неизотермических процессов методом экспоненциальных множителей / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.121-136

27. Butler J., Freakley Р.К. Effect of humidity and water content on the curebehavior of a natural rubber accelerated sulfer compounds // Rubber Chem. and Technol. 1992. - 65, N 2. - C. 374 - 384

28. Geiser M., McGill WJ Thiuram-Accelerated sulfer vulcanization. II. Theformation of active sulfurating agent. // J. Appl. Polym. Sci. 1996. - 60, N3. - C.425-430.

29. Bateman L. e.a. The Chemistry and Physics of Rubber-like Substances /N.Y.: McLaren & Sons., 1963,- P. 449-561

30. Sheele W., Helberg J. Vulcanization of Elastomers. 40.Vulcanization of

31. Natural Rubber and Synthetic Rubber with Sulfer in Presence of

32. Sulfenamides. Ill //Rubber Chem. and Technol.-1965.- V. 38, N l.-P. 189-255

33. Gronski W., Hasenhinde H., Freund В., Wolff S. High resolutionsolidstate 13C NMR studies of the crosslink structure in accelerated sulfer vulcanized natural rubber //Kautsch. und Gummi. Kunstst.-1991.- 44, № 2.-C. 119-123

34. Coran A.Y. Vulcanization. Part 5. The formation of crosslincs in the system: natural rubber-sulfer-MBT-zink ion // Rubber Chem. and Techn., 1964.- V.37.- N3. -P.679-688.

35. Шершнев В.А. О некоторых аспектах серной вулканизации полидиенов // Каучук и резина, 1992.-N3.-C. 17-20,

36. Chapman A.V. The influence of excess zink stearate on the chemistry ofsulfer vulkanization of natural rubber // Phosph.,Sulfer and Silicon and Relat. Elem.-1991.V.-58-59 №l-4.-C.271-274.

37. Coran A.Y. Vulcanization. Part 7. Kinetics of sulfer vulcanization of natural rubber in presence of delayed-action accelerators // Rubber Chem. and Techn., 1965.-V.38.-N1.-P.l-13.

38. Kok С. M. The effects of conpounding variables on the reversion orocess in the sulphur vulcanization of natural rubber. // Eur. Polum. J.",-1987, 23, №8, 611-615

39. Krejsa M.R., Koenig J.L. Solid state carbonCo NMR studiesof elastomers XI.N-t-bytil beztiazole sulfenamide accelerated sulfer vulcanizationof cis-polyisoprene at 75 MHz // Rubber Chem. and Thecnol.-1993.- 66,Nl.-C.73-82

40. Кавун С. M., Подколозина М.М., Тарасова З.Н. // Высокомол. соед.-1968.- Т. 10.-N8.-C.2584-2587

41. Вулканизация эластомеров. / Под ред. Аллигера Г., Сьетуна И. -М.: Химия, 1967.-С.428.

42. Blackman E.J., McCall Е.В. //Rubb. Chem. Technol. -1970. -V. 43, N 3.1. P. 651-663.

43. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

44. Nordsiek K.N. Rubber microstructure and reversion. "Rubber 87: Int.Rubber Conf., Harrogate,1-5 June,1987. Pap." London,1987, 15A/1-15A/10

45. Гончарова JI.T., Шварц А.Г. Общие принципы создания резин для интенсификации процессов шинного производства.// Сб. научн. трудов Пневматические шины из синтетического каучука.- М.-ЦНИИТЭнефтехим.-1979. С.128-142.

46. Yang Qifa Анализ кинетики вулканизации бутилкаучука.// Hesheng xiangjiao gongye = China Synth. Rubber Ind. 1993.- 16, №5. c.283 -288.

47. Ding R., Leonov A. J., Coran A.Y. A study of the vulcanization kinetics of in accelerated-sulfer SBR compound /.// Rubb. Chem. and Technol. 1996. 69, N1. - C.81-91.

48. Ding R., Leonov A. Y. A kinetic model for sulfur accelerated vulcanization of a natural rubber compound // J. Appl. Polym. Sci. -1996. 61, 3. - C. 455-463.

49. Аронович Ф.Д. Влияние вулканизационных характеристик на надежность интенсифицированных режимов вулканизации толстостенных изделий// Каучук и резина.-1993.-N2.-C.42-46.

50. Пиотровский К.Б., Тарасова З.Н. Старение и стабилизация синтетических каучуков и вулканизатов.-М.: Химия, 1980.-264 с.

51. Пальм В.А. Основы количественной теории органических реакций1. Л.-Химия.-1977.-360 с

52. Туторский И.А., Потапов Е.Э., Сахарова Е.В. Исследование механизма взаимодействия полихлоропрена с молекулярными комплексами диоксифенолов и гексаметилентетрамина. //

53. Материалы и технология резинового производства.- Киев., 1978. Препринт А18 (Межд. конф. по каучуку и резине. М.: 1978 .)

54. Туторский И.А., Потапов Е.Э., Шварц А.Г., Модификация резин соединениями двухатомных фенолов// Тем. обзор. М.: ЦНИИТЭ нефтехим, 1976.-82 С.

55. Кравцов Е.И., Шершнев В.А.,Юловская В.Д.,Мирошников Ю.П.// Коллоид. журнал.-1987.-Т.49ХЫХ.-М.-5.-С.1009-1012.

56. Туторский И.А., Потапов Е.Э., Шварц А.Г. Химическая модификация эластомеров М.-Химия 1993 304 с.

57. В.А. Шершнев, А.Г. Шварц, Л.И. Беседина. Оптимизация свойств резин, содержащих в составе вулканизующей группы гексахлорпараксилол и окись магния.//Каучук и резина, 1974, N1, С.13-16.

58. Чавчич Т.А., Богуславский Д.Б., Бородушкина Х.Н., Швыдкая Н.П. Эффективность использования вулканизующих систем, содержащих алкилфенолформальдегидную смолу и серу // Каучук и резина. -1985.-N8.-C.24-28.

59. Петрова С.Б., Гончарова Л.Т., Шварц А.Г. Влияние природы вулканизующей системы и температуры вулканизации на структуру и свойства вулканизатов СКИ-3 // Каучук и резина, 1975.-N5.-C.12-16.

60. Шершнев В.А., Соколова JI.B. Особенности вулканизации каучукагексахлорпараксилолом в присутствии тиомочевины и окислов металлов.//Каучук и резина, 1974, N4, С. 13-16

61. Крашенинников H.A., Пращикина A.C., Фельдштейн М.С. Высокотемпературная вулканизация непредельных каучуков тиопроизводными малеимида // Каучук и резина, 1974, N12, С. 16-21

62. Блох Г.А. Органические ускорители вулканизации и вулка-низующиесистемы для эластомеров.-Jl.: Химия.-1978.-240 с.

63. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

64. Kempermann Т. // Kautsch, und Gummi. Runsts.-1967.-V.20.-N3.-P.126137

65. Донская M.M., Гридунов И.Т Циклические производные тиомочевины- полифункциональные ингредиенты резиновых смесей // Каучук и резина.- 1980.-N6.- С.25-28.; Гридунов И.Т., Донская М.М., //Изв. вузов. Серия хим. и хим. технол., -1969. Т.12, С.842-844.

66. Мозолис В.В., Йокубайтите С.П. Синтез N-замещенных тиомочевин// Успехи химии Т. XLIL- вып. 7,- 1973.-С. 1310-1324.

67. Burke J. Sythesis of tetrahydro-5-substituted-2(l)-s-triazones// Jörn, of American Chem. Society/-1947.- V. 69.- N9.-P.2136-2137.

68. Гридунов И.Т., и др., // Каучук и резина.- 1969.-N3.-C.10-12.

69. Потапов A.M., Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1971.-Т.1.-вып.З,-С.178-182.

70. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С. 183-186.

71. Кучевский В.В.,Гридунов И.Т. //Изв. вузов. Серия хим. и хим.технол.,-1976. Т. 19, - вып.-1 .-С. 123-125.

72. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С.183-186.

73. Потапов A.M., Гридунов И.Т., и др. // В кн. Химия и химическая технология.- М.- 1972.- С.254-256.

74. Кучевский В.В.,Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1972.-Т.2.-вып.1,-С.58-61

75. Казакова E.H., Донская М.М. ,Гридунов И.Т. // Учен. зап. МИТХТим. М.В. Ломоносова,-М.- 1976.-Т.6.- С. 119-123.

76. Кемперманн Т. Химия и технология полимеров.- 1963. -N6.-C.-27-56.

77. Кучевский В.В.,Гридунов И.Т. //Каучук и резина.- 1973.- N10.-C.19-21.

78. Борзенкова А.Я., Симоненкова Л.Б. // Каучук и резина.-1967.-N9.-С.24-25.

79. Эндрюс Л., Кифер Р. Молекулярные комплексы в органической химии: Пер. с англ. М.: Мир, 1967.- 208 с.

80. Татаринова Е.Л., Гридунов И.Т., Федоров А.Г., Унковский Б.В., Испытание резин на основе СКН-26 с новым ускорителем вулканизации пиримидинтионом-2. // Производство шин, РТИ и АТИ. M.-1977.-N1.-C.3-5.

81. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

82. Болотин А.Б., Киро З.Б., Пипирайте П.П., Симаненкова Л.Б. Электронная структура и реакционная способность производных этилентиомочевины// Каучук и резина.-1988.-N11-С.22-25.

83. Кулезнев В.Н. Смеси полимеров.-М.:Химия, 1980.-304 е.;

84. Тагер А.А. Физико-химия полимеров. М.: Химия, 1978. -544 с.

85. Нестеров А.Е., Липатов Ю.С. Термодинамика растворов и смесейполимеров.-Киев. Наукова думка, 1980.-260 с.

86. Нестеров А.Е. Справочник по физической химии полимеров. Свойства растворов и смесей полимеров. Киев. : Наукова думка, 1984.-Т. 1.-374 с.

87. Захаров Н.Д.,Леднев Ю.Н., Нитенкирхен Ю.Н.,Кулезнев В.Н. О роликоллоидно-химических факторов в создании двухфазных смесей эластомеров // Каучук и резина.-1976.-N1.-С. 15-20.

88. Липатов Ю.С. Коллоидная химия полимеров.-Киев: Наукова думка,1980.-260 с.

89. Шварц А.Г., Динсбург Б.Н. Совмещение каучуков с пластиками и синтетическими смолами.-М.:Химия, 1972.-224 с.

90. Мак-Донел Е., Береноул К., Эндриес Дж. В кн.: Полимерные смеси./Под ред.Д.Пола, С.Ньюмена.-М.:Мир,1981.-Т.2.-С.280- 311.

91. Lee B.L.,Singleton Ch. // J. Makromol.Sci.- 1983-84.- V. 22B.-N5-6.-P.665-691.

92. Липатов Ю.С. Межфазные явления в полимерах.-Киев: Наукова думка,1980.-260с.

93. Шутилин Ю.Ф. О релаксационно-кинетических особенностях струкутуры и свойств эластомеров и их смесей. // Высокомол. соед.-1987.-T.29A.-N8.-C. 1614-1619.

94. Ougizawa Т., Inowe Т., Kammer H.W. // Macromol.- 1985.-V.18.- N10.1. Р.2089-2092.

95. Hashimoto Т., Tzumitani Т. // Int. Rubber Conf.- Kyoto.-Oct.15-18,1985.-V.l.-P.550-553.

96. Takagi Y., Ougizawa Т., Inowe T.//Polimer.-1987.-V. 28. -Nl.-P.103-108.

97. Чалых A.E., Сапожникова H.H. // Успехи химии.- 1984.-Т.53.- N11.1. С.1827-1851.

98. Саборо Акияма//Сикудзай Кекайси.-1982.-Т.55-Ю.-С.165-175.

100. Липатов Ю.С. // Механика композ. матер.-1983.-Ю.-С.499-509.

101. Dreval V.E., Malkin A. Ya., Botvinnik G.O. // Jörn. Polimer Sei., Polymer Phys. Ed.-1973.-V.l 1.-P.1055.

102. Mastromatteo R.P., Mitchel J.M., Brett T.J. New accelerators for bleds of EPDM//Rubber Chem. and Technol.-1971.-V. 44, N 4.-P. 10651079.

103. Hoffmann W., Verschut C. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

104. Шершнев B.A., Пестов С.С. // Каучук и резина.-1979.-N9.-С. 11-19.

105. Пестов С.С., Кулезнев В.Н., Шершнев В.А. // Коллоид.журнал.-1978.-T.40.-N4.-C.705-710.

106. Hoffmann W., Verschut С. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

107. Шутилин Ю.Ф. // Высокомол. coefl.-1982.-T.24B.-N6.-C.444-445.

108. Шутилин Ю.Ф. // Там же.-1981.-Т.23Б.-Ш0.-С.780-783.

109. Manabe S., Murakami М. // Intern. J. Polim. Mater.-1981.-V.l.- N1.-P.47-73.

110. Чалых A.E., Авдеев H.H.// Высокомол. соед.-1985.-Т.27А. -N12.-С.2467-2473.

111. Носников А.Ф. Вопросы химии и химической технологии.-Харьков.-1984.-N76.-C.74-77.

112. Запп P.JI. Образование связей на границе раздела между различными эластомерными фазами // В кн.: Многокомпонентные полимерные системы.-М.:Химия,1974.-С.114-129.

113. Лукомская А.И. Исследование кинетики неизотермической вулканизации: Тем. обзор.-М. .ЦНИИТЭнефтехим.-1985.-56 с.

114. Лукомская А.И. в сб.научн.трудов НИИШП "Моделирование механического и теплового поведения резинокордных элементов пневматических шин в производстве". М., ЦНИИТЭнефтехим, 1982, с.3-12.

115. Лукомская А.И., Шаховец С.Е., //Каучук и резина.- 1983.- N5,-С.16-18.

116. Лукомская А.И., Минаев Н.Т., Кеперша Л.М., Милкова Е.М. Оценка степени вулканизации резин в изделиях, Тематический обзор. Серия "Производство шин", М., ЦНИИТЭнефтехим, 1972.-67 с.

117. Лукомская А.И., Баденков П.Ф., Кеперша Л.М. Расчеты и прогнозирование режимов вулканизации резиновых изделий., М.:Химия, 1978.-280с.

118. Машков A.B., Шиповский И.Я. К расчету полей температур и степени вулканизации в резиновых изделиях методом модельной прямоугольной области // Каучук и резина.-1992.-N1.-С. 18-20.

119. Борисевич Г.М., Лукомская А.И., Исследование возможности повышения точности расчета температур в вулканизуемых покрышках//Каучук и резина.- 1974.-N2,-С.26-29.

120. Пороцкий В.Г., Савельев В.В., Точилова Т.Г., Милкова Е.М. Расчетное проектирование и оптимизация процесса вулканизации шин. //Каучук и резина.- 1993.- N4,-C.36-39.

121. Пороцкий В.Г., Власов Г. Я. Моделирование и автоматизация вулканизационных процессов в производстве шин. //Каучук и резина.- 1995.- N2,-С. 17-20.

122. Верне Ш.М. Управление производственным процессом и его моделирование // Материалы и технология резинового производства.- М.-1984. Препринт С75 (Межд. конф. по каучуку и резине. Москва, 1984 г.)

123. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

124. Журавлев В. К. Построение экспериментальных формально-кинетических моделей процесса вулканизации. // Каучук и резина.-1984.- №1.-С.11-13.

125. Sullivan A.B., Hann C.J., Kuhls G.H. Vulcanization chemistry. Sulfer, N-t-butil-2-benzotiazole sulfenamide formulations studied by highperformance liquid chromatography.// Rubber Chem.and Technol. -1992. 65, N 2.-C. 488 - 502

126. Simon Peter, Kucma Anton, Prekop Stefan Kineticka analyza vulranizacie gumarenskych zmesi pomocou dynamickej vykonovej kalorimetrie // Plasty a kauc. 1997. - 3-4, 4. - C. 103-109.

127. Таблицы планов эксперимента для факторных и полиномиальных моделей.- М.: Металлургия, 1982.-С.752

128. Налимов В.В., Голикова Т.Н., Логические основания планирования эксперимента. М.: Металлургия, 1981. С. 152

129. Химмельблау Д. Анализ процессов статистическими методами. -М.:Мир, 1973.-С.960

130. Saville В., Watson A.A. Structural characterization of sulfer-vulcanized rubber network.// Rubber Chem. and Technol. 1967. - 40, N 1. - P. 100 - 148

131. Пестов С.С., Шершнев В.А., Габибулаев И.Д., Соболев B.C. Об оценке густоты пространственной сетки вулканизатов смесей каучуков // Каучук и резина.-1988.-N2.-C. 10-13.

132. Ускоренный метод определения межмолекулярного взаимодействия в модифицированных эластомерных композициях / Седых В.А., Молчанов В.И. // Информ. лист. Воронежского ЦНТИ, № 152(41) -99. -Воронеж, 1999. С. 1-3.

133. Быков В.И. Моделирование критических явлений в химической кинетике.- М. Наука.:, 1988.

134. Молчанов В.И., Шутилин Ю.Ф. О методике оценки активности ускорителей вулканизации // Шестая российская научно практическая конференция резинщиков "Сырьё и материалы для резиновой промышленности. От материалов к изделиям. Москва, 1999.-С.112-114.

135. A.A. Левицкий, С.А. Лосев, В.Н. Макаров Задачи химической кинетики в автоматизированной системе научных исследований Авогадро. в сб.научн.трудов Математические методы в химической кинетике. Новосибирск: Наука. Сиб. отд-ние, 1990.

136. Молчанов В.И., Шутилин Ю.Ф., Зуева С.Б. Моделирование вулканизации с целью оптимизации и контроля состава рецептур резиновых смесей // Материалы XXXIV отчетной научной конференции за 1994 год. ВГТА Воронеж, 1994- С.91.

137. Э.А. Кюллик, М.Р. Кальюранд, М.Н. Коэль. Применение ЭВМ в газовой хроматографии.- М.: Наука, 1978.-127 С.

138. Денисов Е.Т. Кинетика гомогенных химических реакций. -М.: Высш. шк., 1988.- 391 с.

139. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи /Пер. с англ.-М.: Мир, 1990.-512 с.

140. Новиков Е.А. Численные методы решения дифференциальных уравнений химической кинетики / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.53-68

141. Молчанов В.И. Исследование критических явлений в совулканизатах эластомеров //Материалы XXXVI отчетной научной конференции за 1997 год: В 2 ч.ВГТА. Воронеж, 1998. 4.1. С. 43.

142. Молчанов В.И., Шутилин Ю.Ф. Обратная задача кинетики структурирования смесей эластомеров // Всероссийская научно-практическая конференция "Физико-химические основы пищевых и химических производств."- Воронеж, 1996 С.46.

143. Белова Ж.В., Молчанов В.И. Особенности структурирования резин на основе непредельных каучуков // Проблемы теоретической и экспериментальной химии; Тез. докл. III Всерос. студ. научн. конф Екатеринбург, 1993 - С. 140.

144. Молчанов В.И., Шутилин Ю.Ф. Кинетика вулканизации резиновых смесей на основе разнополярных каучуков // Материалы XXXIII отчетной научной конференции за 1993 год ВТИ Воронеж, 1994-С.87.

145. Молчанов В.И., Котырев С.П., Седых В.А.Моделирование неизотермической вулканизации массивных резиновых образцов //Материалы XXXVIII юбилейной отчетной научной конференции за 1999 год: в 3 ч. ВГТА. Воронеж, 2000. 4.2 С. 169.

146. Молчанов В.И., Седых В.А., Потапова Н.В. Моделирование образования и деструкции эластомерных сеток // Материалы XXXV отчетной научной конференции за 1996 год: В 2 ч. / ВГТА. Воронеж, 1997. 4.1. С.116.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Сергей Г. Т ихомиров, Оль га В. Карманова, Юрий В. Пятаков, Александр А. Маслов Введите здесь название статьи Sergei G. Tikhomirov, Ol ga V. Karmanova, Yurii V. Pyatakov, Ale ksandr A. Maslov Введите здесь название статьи на английском языке Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Обзорная статья/eview article УДК 6.53 DOI: http://doi.org/0.094/30-0-06-3-93-99 Программный комплекс для решения задач математического моделирования процесса изотермической вулканизации Сергей Г. Тихомиров, Ольга В. Карманова, Юрий В. Пятаков, Александр А. Маслов [email protected] [email protected] [email protected] [email protected] кафедра информационных и управляющих систем, Воронеж. гос. ун-т. инж. техн., пр-т Революции, 9, г. Воронеж, Россия кафедра химии и химической технологии органических соединений и переработки полимеров, Воронеж. гос. ун-т. инж. техн., пр-т Ленинский, 4, г. Воронеж, Россия Реферат. На основе общих закономерности серной вулканизации диеновых каучуков рассмотрены принципы эффективного проведения процесса с использованием многокомпонентных структурирующих систем. Отмечается, что описание механизма действия комплексных сшивающих систем осложняется многообразием взаимодействий компонентов и влиянием каждого из них на кинетику вулканизации, что приводит к различным рецептурно-технологическим усложнениям реальной технологии и сказывается на качестве и технико-экономических показателях производства резинотехнических изделий. Системный анализ процесса изотермической вулканизации выполнен на основе известных теоретических подходов и включал интегрирование различных методов и приемов исследования в единую взаимосвязанную совокупность методов. В ходе анализа кинетики вулканизации установлено, что параметры образования пространственной сетки вулканизатов зависят от множества факторов, для оценки которых требуется специальное математическое и алгоритмическое обеспечение. В результате проведенной стратификации изучаемого объекта выделены основные подсистемы. Разработан программный комплекс для решения прямой и обратной кинетических задач процесса изотермической вулканизации. Информационное обеспечение «Изотермическая вулканизация» разработано в виде прикладных программ математического моделирования процесса изотермической вулканизации и направлено на решение прямой и обратной кинетических задач. При решении задачи уточнения общей схемы химических превращений использовался универсальный механизм, включающий побочные химические реакции. Программный продукт включает в себя численные алгоритмы решения системы дифференциальных уравнений. Для решения обратной кинетической задачи используются алгоритмы минимизации функционала, при наличии ограничений на искомые параметры. Для описания работы с данным продуктом приведена логическая блок-схема программы. Приведен пример решения обратной кинетической задачи с помощью программы. Разработанное информационное обеспечение, реализовано на языке программирования С++. Для определения начальной концентрации действительного агента вулканизации использована универсальная зависимость, позволяющая использовать модель с различными свойствами многокомпонентных структурирующих систем Ключевые слова: изотермическая вулканизация, математическое моделирование, схема кинетики вулканизации, информационное обеспечение The software package for solving problems of mathematical modeling of isothermal curing process Sergei G. Tikhomirov, Ol ga V. Karmanova, Yurii V. Pyatakov, Aleksandr A. Maslov [email protected] [email protected] [email protected] [email protected] information and control systems department, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia chemistry and chemical technology of organic compounds and polymers processing department, Voronezh state university of engineering technologies, Leninsky Av., 4 Voronezh, ussia Summary. On the basis of the general laws of sulfur vulcanization diene rubbers the principles of the effective cross-linking using a multi-component agents was discussed. It is noted that the description of the mechanism of action of the complex cross-linking systems are complicated by the diversity of interactions of components and the influence of each of them on the curing kinetics, leading to a variety technological complications of real technology and affects on the quality and technical and economic indicators of the production of rubber goods. ased on the known theoretical approaches the system analysis of isothermal curing process was performed. It included the integration of different techniques and methods into a single set of. During the analysis of the kinetics of vulcanization it was found that the formation of the spatial grid parameters vulcanizates depend on many factors, to assess which requires special mathematical and algorithmic support. As a result of the stratification of the object were identified the following major subsystems. A software package for solving direct and inverse kinetic problems isothermal curing process was developed. Information support Isothermal vulcanization is a set of applications of mathematical modeling of isothermal curing. It is intended for direct and inverse kinetic problems. When solving the problem of clarifying the general scheme of chemical transformations used universal mechanism including secondary chemical reactions. Functional minimization algorithm with constraints on the unknown parameters was used for solving the inverse kinetic problem. Shows a flowchart of the program. An example of solving the inverse kinetic problem with the program was introduced. Dataware was implemented in the programming language C ++. Universal dependence to determine the initial concentration of the curing agent was applied. It allowing the use of a model with different properties of multicomponent curing systems. informed decisions. Keywords: isothermal curing, mathematical modeling, the scheme of the curing kinetics, informational software Для цитирования Тихомиров С.Г., Карманова О.В., Пятаков Ю.В., Маслов А.А. Программный комплекс для решения задач математического моделирования процесса изотермической вулканизации // Вестник ВГУИТ. 06. 3. С 93 99. doi:0.094/30-0-06-3-93-99 For citation Tihomirov S.G., Karmanova O.V., Pyatakov Yu.V., Maslov A.A The software package for solving problems of mathematical modeling of isothermal curing process. Vestnik VSUET . 06. no 3 pp. 93 99 (in uss.). doi:0.094/30-0-06-3-93-99 93

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 94 Введение К настоящему времени установлены общие закономерности серной вулканизации диеновых каучуков, основанные на существовании в композициях действительных агентов вулканизации эластомеров (ДАВ). Однако принципы эффективного проведения процесса с использованием многокомпонентных структурирующих систем изучены недостаточно. Описание механизма их действия осложняется многообразием взаимодействий компонентов и влиянием каждого из них на кинетику вулканизации. Это приводит к различным рецептурно-технологическим усложнениям реальной технологии и сказывается на качестве и технико-экономических показателях производства резинотехнических изделий. Анализ кинетики вулканизации показал, что существующие подходы к ее описанию основываются на химических реакциях макромолекул с вулканизующими агентами, а параметры образования пространственной сетки вулканизаторов зависят от множества факторов, влияние которых можно оценить только с помощью специального математического и алгоритмического обеспечения . Для повышения эффективности исследования, выявления причин, приводящих к получению продукции, не отвечающей нормативным требованиям, прогноза протекания процесса необходимо создание специального программного обеспечения (ПО). Целью настоящей работы является разработка программного комплекса для решения прямой и обратной кинетических задач процесса изотермической вулканизации. Системный анализ процесса вулканизации Анализ известных теоретических подходов к описанию вулканизации, а также других процессов в химической промышленности [ 4] и аспектов их практической реализации с учетом особенностей отдельных стадий позволил выявить общие системные свойства и основные закономерности процессов и определить направление исследований для получения новой информации по оптимизации режимов вулканизации и свойств готовых изделий . Системный анализ включает интегрирование различных методов и приемов исследования (математических, эвристических), разработанных в рамках различных научных направлений в единую взаимосвязанную совокупность методов. Многофакторный анализ процесса позволил разработать общую структуру исследования (рисунок). Объект исследования является слабоструктурированным, поскольку содержит как качественные элементы (эластомеры, наполнители, условия проведения процесса) так и малоизученные (многокомпонентные структурирующие системы, неконтролируемые возмущения), которые имеют тенденцию доминировать. В состав общей структуры входят элементы, которые необходимо теоретически обосновать (кинетическая модель, процессы тепломассопереноса, оптимизация режимов, процессы переработки). Таким образом, для оценки способов решения необходимо определить все существующие взаимосвязи и установить их влияние с учетом взаимодействий на поведение всей системы в целом. Анализ общей структуры показал, что механические свойства вулканизатов определяются химическими реакциями макромолекул с вулканизующими агентами, а для оценки параметров пространственной сетки вулканизатов необходимо разработать специальное математическое и алгоритмическое обеспечение. В результате проведенной стратификации изучаемого объекта выделены следующие основные подсистемы:) анализ и учет термофлуктуационных явлений, обеспечивающих ускорение протекания химических реакций;) кинетическая модель вулканизации; 3) оптимизация режимов вулканизации, обеспечивающая получение требуемых механических свойств. Математическое моделирование процесса изотермической вулканизации Получение достоверной информации о протекании процессов сшивания эластомеров комплексными структурирующими системами, тесно связано с проблемами проектирования, оптимизации и управления режимами вулканизации в промышленности. Известно, что одним из традиционных способов описания формальной кинетики вулканизации является использование кусочно-определенных функций для отдельных стадий процесса: индукционного периода, структурирования и реверсии. Описание процесса в целом и расчет кинетических констант в настоящее время выполнен только для отдельных типов каучуков и вулканизующих систем . Основные заключения о кинетике процесса основываются на модельных системах с низкомолекулярными аналогами эластомеров. В то же время полученные количественные данные не всегда возможно распространять на производственные процессы.

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Рисунок. Схема исследования процесса вулканизации эластомеров Figure. Scheme of study process of vulcanization of elastomers Оценка физико-механических свойств производственных резин, по данным, полученным на предприятии, является, безусловно, прогрессивным методом в решении задачи моделирования процесса вулканизации, но требует строгого внутреннего единства физико-химического подхода на каждом этапе исследования и разработки вычислительных алгоритмов и программ. Ответить на этот вопрос можно, только тщательно выполнив эксперименты по плану, соответствующему предполагаемой кинетической модели и рассчитав несколько альтернативных вариантов модели. Для этого требуется независимым методом установить число формальных механизмов реакций, ответственных за структурирование эластомерной композиции. Традиционные методики анализа процессов во временной области не дают возможности четко разделять процессы с синергическим взаимодействием, что, в свою очередь, не позволяет использовать их для анализа производственных резин. При решении задачи уточнения общей схемы химических превращений целесообразно исходить из максимального в некотором смысле механизма. Поэтому в кинетическую схему включены дополнительные реакции, описывающие образование и деструкцию лабильных полисульфидных связей (Vu lab), внутримолекулярную циклизацию и другие реакции, приводящие к модификации макромолекул, образование макрорадикала и его реакцию с подвесками ДАВ. Система дифференциальных уравнений (ДУ) по стадиям процесса будет иметь следующий вид : dca / dt k CA k4ca C *, dc / dt k CA kc k4ca C * k 8C *, dc * / dt k C k3 k5 k7 C * k C k C C, 6 VuLab 4 A * dcvust / dt k3 C *, dcvulab / dt k5c k6cvulab, dcc / dt k7 C *, dc * / dt k8c k 8C *, dc / dt k8 C. () 95

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 96 Начальные условия: 0 0 CA S8 AC Akt C ; C 0 0; C 0 0; * VuSt C 0 0; C 0 0; VuLab C C 0 C 0, * C 0 0; C 0 4,95 ; где ς, θ, η, коэффициенты, начальная концентрация серы, начальная концентрация ускорителя, θ начальная концентрация активатора (оксида цинка), [С (0)] η начальная концентрация макрорадикалов. Здесь A действительный агент вулканизации; В предшественник сшивания; В* его активная форма; С внутримолекулярная связанная сера; VuSt, VuLab стабильные и лабильные узлы вулканизационной сетки; каучук; * макрорадикал каучука в результате термофлуктуационного распада; α, β, γ и δ стехиометрические коэффициенты, k, k, k 8, k 9 (k 8) константы скорости реакции, относящиеся к соответствующим стадиям процесса. Прямая задача кинетики (ПЗК) задача нахождения концентрации вулканизационных узлов как функции времени. Решение ПЗК сводится к решению системы ДУ () при заданных начальных условиях. Кинетическая кривая процесса вулканизации определяется по величине крутящего момента Mt. Обратная задача кинетики (ОЗК) задача идентификации констант скорости реакций, стехиометрических коэффициентов и переменных в системе (). Решение ОЗК осуществляется путем минимизации функционала: где Ф k, k,..., k, k, 8 8 t к q k, k,..., k8, k 8, tdt 0 q k, k,..., k, k, t 8 8 M t M M M С min / max min Vu (), (3) M max, M min соответственно максимальное и минимальное значения коэффициент. Mt, масштабный Описание программного обеспечения Программное обеспечение «Изотермическая вулканизация» разработано в качестве комплекса прикладных программ (КПП) для решения задач, связанных с математическим моделированием процесса изотермической вулканизации. Для решения системы ДУ в пакете предусмотрены численные методы, включающие в себя: метод Рунге-Кутта четвертого порядка; метод Адамса. Решение обратной кинетической задачи сводится к оценке констант скоростей реакций, стехиометрических коэффициентов и переменных в системе ДУ (). Для минимизации функционала () в пакете программ на усмотрения пользователя могут использоваться следующие методы: покоординатного спуска, Хука-Дживса, Розенброка, Пауэлла, Нелдера-Мида, усреднения координат (с использованием элементов случайного поиска). Градиентные методы (первого порядка): наискорейшего спуска, сопряженных направлений (Флетчера-Ривса), переменной метрики (Давидона-Флетчера-Пауэлла), параллельных градиентов (Зангвилла). На рисунке изображена структурная схема, разработанного программного обеспечения. Процесс идентификации констант скорости реакций, коэффициентов уравнений и стехиометрических коэффициентов осуществляется в несколько этапов: оцифровка реограмм; перевод крутящих моментов в концентрации; определение начальных концентраций; определение значений искомых параметров констант обеспечивающих минимум функционала (). Оцифровка реограмм может происходить вручную или же в автоматическом режиме с помощью, интегрированной в пакет, программы GrDigit. Обработка экспериментальных данных может осуществляться как для одного измерения, так и набора (до 6 реограмм). Перевод крутящих моментов в концентрации узлов вулканизационной сетки осуществляется следующим образом: значения крутящих моментов переводятся в условные единицы: усл / M M M M M (4) тек min max min затем условные единицы переводят в (моль/кг), путем умножения M усл на масштабный коэффициент. Определение начальной концентраций C 0 ДАВ осуществляется по формуле: A 0 0 CA S8 AC Akt C (5)

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Рисунок. Структурная схема программного обеспечения Figure. Structural software scheme Апробация разработанного программного обеспечения В качестве исходных данных использованы реометрические кривые, полученные при следующих начальных условиях:. Значение концентрации серы в смеси: = 0,0078 моль/кг.. Концентрация ускорителя: = 0,009 моль/кг. 3. Концентрация активатора: θ = 0,00 моль/кг. На рисунке 3 приведены экспериментальные и расчетные значения концентрации вулканизационных узлов, полученные в результате решения ОКЗ. В таблице приведены рассчитанные значения констант скоростей реакций, в таблице оцененные значения стехиометрических коэффициентов и параметров модели. Таблица Значение констант скоростей реакций Table The value of the reaction rate constants Константа Constant Значения Values Константа Constant Значения Values k 0, k6 0,553 k 0, k7 0,96 k3 4,8 0-0 k8,3 k4,3 k8" 0, k5,89 0-0 Рисунок 3. Изменения концентраций узлов вулканизационной сетки во времени. Figure 3. Changes in the concentrations of the vulcanization grid points in time. the calculated values; experimental values. Оцифрованные и обработанные экспериментальные данные заносятся в программу, определяются начальные приближения и диапазон поиска констант, после чего выбирается метод оптимизации. Таблица Значения стехиометрических коэффициентов и параметров модели Table The values of stoichiometric coefficients and parameters of the model pas α β γ δ ξ θ η,4,0,9,65 0 8 0,97-4, 97

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Заключение На основе системного анализа теоретических подходов к описанию вулканизации усовершенствована общая структурная схема исследования данного процесса. Математическая модель процесса вулканизации дополнена начальными условиями, которые определены как функции исходных концентраций компонентов вулканизующей группы. Для решения обратной кинетической задачи предложены дополнительные критерии качества модели. Разработан программный продукт, предназначенный для проведения научно-исследовательских работ при изучении процессов вулканизации резиновых смесей с использованием многокомпонентных структурирующих систем. КПП имеет блочно-модульную структуру, что позволяет осуществлять его расширение без потери функциональности. Направлениями его модернизации является включение в состав математического описания неизотермического режима вулканизации с дальнейшей интеграцией в контур АСУТП в качестве экспертной информационно-управляющей системы для выдачи рекомендаций по управлению процессом вулканизации и принятия решений. Работа выполнена при финансовой поддержке государственного задания 04/ (номер НИР 304) по теме «Синтез многофункциональных систем контроля качества для пищевой и химической промышленности» ЛИТЕРАТУРА Тихомиров С.Г., Битюков В.К., Подкопаева С.В., Хромых Е.А. и др. Математическое моделирование объектов управления в химической промышленности. Воронеж: ВГУИТ, 0. 96 с. Хаустов И.А. Управление синтезом полимеров периодическим способом на основе дробной подачи компонентов реакции // Вестник ТГТУ. 04. 4 (0) С. 787 79. 3 Хаустов И.А. Управление процессом деструкции полимеров в растворе на основе дробной загрузки инициатора // Вестник ВГУИТ. 04. 4. С. 86 9. 4 Битюков В.К., Хаустов И.А., Хвостов А.А. и др. Системный анализ процесса термоокислительной деструкции полимеров в растворе как объекта управления // Вестник ВГУИТ. 04. 3 (6). С. 6 66. 5 Карманова О.В. Физико-химические основы и активирующие компоненты вулканизации полидиенов: дисс. д-ра техн. наук. Воронеж, 0. 6 Молчанов В.И., Карманова О.В., Тихомиров С.Г. Моделирование кинетики вулканизации полидиенов // Вестник ВГУИТ. 03.. С. 4 45. 7 Hardis., Jessop J.L.P., Peters F.E., Kessler M.. Cure kinetics characterization and monitoring of an epoxy resin using DSC, aman spectroscopy, and DEA // Composite. 03. Part A. V. 49. P. 00 08. 8 Javadi M., Moghiman M., eza Erfanian M., Hosseini N. Numerical Investigation of Curing Process in eaction Injection Molding of ubber for Quality Improvements // Key Engineering Materials. 0. V. 46 463. P. 06. EFEENCES Tikhomirov S.G., ityukov V.K. Podkopaeva S.V., Khromykh E.A. et al. Matematicheskoe modelirovanie ob ektov upravleniya v khimicheskoi promyshlennosti Voronezh, VSUET, 0. 96 p. (in ussian). Khaustov I.A. Management polymer synthesis batch process based on the fractional flow of the reaction components. Vestnik TGTU 04, no. 4 (0), pp. 787 79. (in ussian). 3 Khaustov I.A. Process control degradation of polymers in the solution based on the fractional loading of the initiator. Vestnik VGUIT 04, no. 4, pp. 86 9 (in ussian). 4 ityukov V.K., Khaustov I.A., Khvostov A.A. System analysis of the thermo oxidative degradation of polymers in solution as a control object. Vestnik VGUIT 04, no. 3 (6), pp. 6 66. (in ussian). 5 Karmanova O.V. Fiziko-khimicheskie osnovy i aktiviruyushchie komponenty vulknizatsii polidienov Voronezh, 0. (in ussian). 6 Molchanov V.I., Karmanova O.V., Tikhomirov S.G. Modeling the kinetics of vulcanization polydienes. Vestnik VGUIT 03, no., pp. 4 45. (in ussian). 7 Hardis., Jessop J.L.P., Peters F.E., Kessler M.. Cure kinetics characterization and monitoring of an epoxy resin using DSC, aman spectroscopy, and DEA. Composite, 03, part A, vol. 49, pp. 00 08. 8 Javadi M., Moghiman M., eza Erfanian M., Hosseini N. Numerical Investigation of Curing Process in eaction Injection Molding of ubber for Quality Improvements. Key Engineering Materials. 0, vol. 46 463, pp. 06. 98

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 СВЕДЕНИЯ ОБ АВТОРАХ Сергей Т. Тихомиров профессор, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] Ольга В. Карманова зав. кафедрой, профессор, кафедра химии и химической технологии органических соединений и переработки полимеров, Воронежский государственный университет инженерных технологий, Лениннский пр-т, 4, г. Воронеж, 394000, Россия, [email protected] Юрий В. Пятаков доцент, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] Александр А. Маслов аспирант, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] INFOMATION AOUT AUTHOS Sergei G. Tikhomirov professor, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] Olga V. Karmanova professor, head of department, department of chemistry and chemical technology of organic compounds and polymers processing, Voronezh state university of engineering technologies, Leninsky Av., 4 Voronezh, ussia, [email protected] Yurii V. Pyatakov associate professor, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] Aleksandr A. Maslov graduate student, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] КРИТЕРИЙ АВТОРСТВА Сергей Т. Тихомиров предложил методику проведения эксперимента и организовал производственные испытания Александр А. Маслов обзор литературных источников по исследуемой проблеме, провел эксперимент, выполнил расчеты Ольга В. Карманова консультация в ходе исследования Юрий В. Пятаков написал рукопись, корректировал её до подачи в редакцию и несет ответственность за плагиат КОНФЛИКТ ИНТЕРЕСОВ Авторы заявляют об отсутствии конфликта интересов. CONTIUTION Sergei G. Tikhomirov proposed a scheme of the experiment and organized production trials Aleksandr A. Maslov review of the literature on an investigated problem, conducted an experiment, performed computations Olga V. Karmanova consultation during the study Yurii V. Pyatakov wrote the manuscript, correct it before filing in editing and is responsible for plagiarism CONFLICT OF INTEEST The authors declare no conflict of interest. ПОСТУПИЛА 7.07.06 ECEIVED 7.7.06 ПРИНЯТА В ПЕЧАТЬ.08.06 ACCEPTED 8..06 99

Выводы

На основе системного анализа процесса гуммирования оцинкованной полосы определены модели и методы, применение которых необходимо для реализации метода управления: имитационная модель процесса сушки полимерного покрытия, метод оптимизации технологических параметров процесса полимеризации на основе генетического алгоритма и модель нейро-нечёткого управления процессом.

Определено, что разработка и реализация метода управления процессом вулканизации оцинкованной полосы на агрегате полимерных покрытий на основе нейро-нечетких сетей является актуальной и перспективной научно-технической задачей с точки зрения экономической выгоды, сокращения издержек и оптимизации производства.

Установлено, что процесс вулканизации оцинкованной полосы в печах агрегата покрытий металла является многосвязным объектом с распределённостью параметров по координате, работающим в условиях нестационарности и требует системного подхода к изучению.

Определены требования, предъявляемые к математическому обеспечению системы управления многосвязными тепловыми объектами агрегата покрытий металла: обеспечение функционирования в режиме непосредственной связи с объектом и в режиме реального времени, разнообразия выполняемых функций при их относительной неизменности во время эксплуатации, обмена информацией с большим количеством её источников и потребителей в процессе решения основных задач, работоспособности в условиях, ограничивающих время расчета управляющих воздействий.

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ НЕЙРО-НЕЧЁТКОГО УПРАВЛЕНИЯ МНОГОСВЯЗНЫМИ ТЕПЛОВЫМИ ОБЪЕКТАМИ АГРЕГАТА ГУММИРОВАННЫХ ПОКРЫТИЙ МЕТАЛЛА

Системный анализ управления многосвязными тепловыми объектами агрегата гуммированных покрытий

Концептуальное проектирование - начальная стадия проектирования, на которой принимаются решения, определяющие последующий облик системы, и проводятся исследование и согласование параметров созданных решений с возможной их организацией. В настоящее время становится постепенно осознанным то, что для построения систем на качественно ином уровне новизны, а не просто их модернизации, необходимо быть вооруженным теоретическими представлениями о том, в каком направлении развиваются системы. Это необходимо для организации управления этим процессом, что повысит как показатели качества этих систем, так и эффективность процессов их проектирования, функционирования и эксплуатации .

На данном этапе необходимо сформулировать задачу управления, из которой получим задачи исследования. После анализа процесса полимеризации оцинкованной полосы как объекта управления необходимо определить границы предметной области, представляющие интерес при построении модели управления процессом, т.е. определиться с требуемым уровнем абстракции моделей, которые предстоит построить.

Важнейшим приемом системного исследования является представление любых сложных систем в виде моделей, т.е. применение метода познания, в котором описание и исследование характеристик и свойств оригинала заменяется описанием и исследованием характеристик и свойств некоторого другого объекта, который в общем случае имеет совершенно другое материальное или идеальное представление. Важно, что модель отображает не сам объект исследования в наиболее близком к оригиналу виде, а только те его свойства и структуры, которые в большей степени интересуют для достижения поставленной цели исследования.

Задача управления заключается в задании таких значений параметров процесса вулканизации оцинкованной полосы, которые позволят достичь максимального коэффициента прилипания при минимальном расходе энергоресурсов.

К качеству произведенного предварительно окрашенного проката предъявляется ряд требований, которые описаны в ГОСТ, перечисленных в разделе 1.3. Процесс сушки в печах агрегата гуммированных покрытий влияет только на качество прилипания к подложке. Поэтому такие дефекты как неравномерность покрытия, отклонение по блеску и рытвины в данной работе не рассматриваются.

Для осуществления процесса сушки полимерного покрытия необходимо знать следующий набор технологических параметров: температуры 7 печных зон (Tз1…Tз7), скорость линии (V), плотность и теплоёмкость металлической подложки (, с), толщина и начальная температура полосы (h, Tнач.), интервал температур полимеризации наносимой краски ().

Эти параметры в производстве принято называть рецептом.

Такие параметры как мощность вентиляторов, установленных в печных зонах, объем подводимого чистого воздуха, параметры взрывоопасности лаков исключаются из рассмотрения, так как они влияют на скорость прогрева зон перед сушкой и концентрацию взрывоопасных газов, которые в данной работе не раскрываются. Их регулирование осуществляется отдельно от управления самим процессом вулканизации.

Определим задачи исследования, которые необходимо выполнить для достижения цели управления. Отметим, что текущее состояние системного анализа предъявляет особые требования к решениям, принимаемым на основе исследования полученных моделей. Мало просто получить возможные решения (в данном случае, значения температур печных зон) - необходимо, чтобы они были оптимальны. Системный анализ, в частности позволяет предложить методики принятия решений по целенаправленному поиску приемлемых решений путем отбрасывания тех из них, которые заведомо уступают другим по заданному критерию качества. Цель его применения к анализу конкретной проблемы состоит в том, чтобы, применяя системный подход и, если это возможно, строгие математические методы, повысить обоснованность принимаемого решения в условиях анализа большого количества информации о системе и множества потенциально возможных решений .

В связи с тем, что на данном этапе нам известны только входные и выходные параметры моделей, опишем их с помощью подхода с позиции «чёрного ящика».

Первая задача, которую необходимо решить, - это построить имитационную модель процесса сушки покрытия, т.е. получить математическое описание объекта, использующееся для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта. Это нужно, чтобы определить, до какой величины повысится температура поверхности металла (Тпов. вых.) при выходе из печи при заданных значениях скорости полосы, толщины, плотности, теплоёмкости и начальной температуры металла, а также температур печных зон. В дальнейшем сравнение величины, полученной на выходе этой модели, с температурой полимеризации краски позволит сделать вывод о качестве прилипания покрытия (рисунок 10).

Рисунок 10 - Концептуальная имитационная модель процесса сушки покрытия

Вторая задача - разработать метод оптимизации технологических параметров процесса вулканизации оцинкованной полосы. Для её решения необходимо осуществить формализацию критерия качества управления и построить модель оптимизации технологических параметров. В связи с тем, что регулирование температурного режима осуществляется за счёт изменения температур печных зон (Tз1…Tз7), данная модель должна оптимизировать их значения (Tз1опт…Tз7опт) согласно критерию качества управления (рисунок 11). Данная модель на вход получает и температуры вулканизации, поскольку без них невозможно определить качество прилипания краски к металлической подложке.


Рисунок 11 - Концептуальная модель оптимизации технологических параметров