Всё самое интересное в одном журнале. Альберт Эйнштейн (Albert Einstein) биография, изобретения, тайны Какой бытовой прибор изобрел альберт эйнштейн

Альберт Эйнштейн является одним из самых известных ученых двадцатого века. Его заложили основу для новой отрасли физики, а E=mc 2 Эйнштейна по эквивалентности массы и энергии — одна из самых известных формул в мире. В 1921 году он получил Нобелевскую премию по физике за вклад в теоретическую физику и эволюцию квантовой теории.

Эйнштейн также хорошо известен как оригинальный свободный мыслитель, выступал по целому ряду гуманитарных и глобальных проблем. Внес свой вклад в теоретическое развитие ядерной физики и поддержал Ф. Д. Рузвельта в запуске Манхэттенского проекта, но позже Эйнштейн выступил против использования ядерного оружия.

Эйнштейн, рожденный в еврейской семье в Германии, в молодости переехал в Швейцарию, а затем, после прихода к власти Гитлера, переселился в США. Эйнштейн был поистине глобальным человеком и одним из бесспорных гениев двадцатого века. А теперь давайте обо всем по порядку.

Отец Эйнштейна, Германн, родился в 1847 году в швабской деревне Бухау. Германн, еврей по национальности, имел склонность к математике, учился в школе недалеко от Штутгарта. В университет он не смог поступить в связи с тем, что большинство университетов были закрыты для евреев и в последствии начал заниматься торговлей. Позже Герман и его родители переехали в более процветающий город Ульм, который пророчески имел девиз “Ulmenses sunt mathematici”, что в переводе значит: “люди Ульма — математики”. В возрасте 29 лет Германн женился на Полине Кох, которая была на одиннадцать лет младше него.

Отец Полины, Юлий Кох, построил большое состояние на продаже зерна. Полина унаследовала практичность, остроумие, хорошее чувство юмора и могла заразить смехом кого угодно (эти черты она успешно передаст своему сыну).

Герман и Полина были счастливой парой. Их первенец родился в 11:30 в пятницу, 14 марта 1879 года, в Ульме, город, который в то время присоединился, наряду с остальной частью Швабии, к немецкому Рейху. Первоначально, Полина и Германн планировал назвать мальчика Авраам, как его дедушку по отцовской линии. Но потом они пришли к выводу, что это имя будет звучать слишком по еврейски и они решили сохранить начальную букву А и назвали мальчика Альбертом Эйнштейном.

Стоит обратить внимание на интересный факт, который навсегда запечатлеться в памяти Эйнштейна и существенно повлиял на него в будущем. Когда маленькому Альберту было 4 или 5 лет он заболел и его
отец, чтобы мальчик не скучал принес ему компас. Как потом скажет Эйнштейн — он был так взволнован, от тех таинственных сил, которые заставляли магнитную иглу вести себя так, как будто на нее влияли скрытые неизведанные поля. Это чувство удивления и пытливость ума, остались в нем и мотивировало его на протяжении всей жизни. Как он говорил: «Я все еще помню или, по крайней мере, я верю, что могу вспомнить — что тот момент произвел глубокое и неизгладимое впечатление на меня!».

Примерно в том же возрасте его мама привила Эйнштейну любовь к скрипке. Первое время ему не нравилась жесткая дисциплина, но после того как он ближе познакомился с произведениями Моцарта, музыка стала казаться одновременно магический и эмоциональный для мальчика: “Я верю, что любовь — лучший учитель, чем чувство долга, — сказал он, — по крайней мере, для меня”. С этих пор по заявлениям близких друзей, когда ученый сталкивался с трудными задачами, Эйнштейн отвлекался на музыку и она помогала ему сосредоточится и преодолевать трудности. Во время игры, импровизируя, он размышлял о проблемах, и вдруг “он внезапно обрывал в середине игру и взволнованно уходил работать, будто к нему приходило вдохновение”, как говорили близкие.

Когда Альберту исполнилось 6 лет и пришлось выбирать школу, его родители не переживали, что поблизости не было еврейской школы. И он отправился в большую католическую школу по соседству, в Петершуле. Будучи единственным евреем среди семидесяти учеников в своем классе, Эйнштейн хорошо учился, прошел стандартный курс по католической религии.

Когда Альберту исполнилось 9 лет, он перевелся в среднюю школу недалеко от центра Мюнхена, гимназии Леопольда, которая была известна как просвещенный институт, который усиленно изучал математику и науку, а также латынь и греческий язык.

Для того, чтобы быть принятым в Федеральный технологический институт (позже переименованном в ETH) в Цюрихе, Эйнштейн сдал вступительные экзамены в октябре 1895 года. Однако, некоторые из его результатов были недостаточны и, по совету ректора, он отправился в «Kantonsschule» в городе Аарау, чтобы улучшить свои знания.

В начале октября 1896 года Эйнштейн получил свидетельство об окончании школы и вскоре после этого поступил в Федеральный технологический институт Цюриха по специальности преподаватель по математике и физике. Эйнштейн, был хорошистом и закончил учебу в июле 1900 года. Затем он работал ассистентом в Политехническом институте в Шуле и других университетах.

В период с мая 1901 года по январь 1902 года он учился в Винтертуре и Шаффхаузене. Вскоре он переехал в Берн, столицу Швейцарии. Для того, чтобы зарабатывать на жизнь, он давал частные уроки по математике и физике.

Альберт Эйнштейн личная жизнь

Эйнштейн был дважды женат, сначала на своей бывшей ученице Милевой Марич, а затем на своей двоюродной сестре Эльзе. Его браки были были не очень удачными. В письмах Эйнштейн выражал угнетение, которое он испытал в своем первом браке, описывая Милеву как властную и ревную женщину. В одном из писем он даже признался, что хотел, чтобы его младший сын Эдуард, у которого была шизофрения, никогда не рождался. Что касается его второй жены Эльзы, он называл их отношения союзом удобства.

Биографы, изучая такие письма, считали Эйнштейна холодным и жестоким мужем и отцом, но в 2006 году вышло в свет около 1400 ранее неизвестных писем ученого и биографы изменили взгляд на его отношения к его женам и семье в положительную сторону.

В более свежих письмах мы можем обнаружить, что Эйнштейн сострадал и сочувствует своей первой жене и детям, он даже передал им часть своей денежной суммы от выигрыша Нобелевской премии мира в 1921 года.

Что касается второго брака, Эйнштейн, по-видимому, открыто обсуждал свои дела с Эльзой, а также держал ее в курсе своих путешествий и мыслей.
По словам Эльзы — она осталась с Эйнштейном, несмотря на его недостатки, объяснив свои взгляды в письме: “Такой гений должен быть безупречным во всех отношениях. Но природа не ведет себя так, если она дает экстравагантность, то она проявляется во всем.”

Но это не значит, что Эйнштейна считал себя образцовым семьянином, в одном из писем ученый признал что: “Я восхищаюсь своим отцом за то, что за всю свою жизнь он остался с одной женщиной. В этом деле же я потерпел неудачу дважды”.

В общем при всей своей бессмертной гениальности Эйнштейн в личной жизни был обычным человеком.

Эйнштейн интересные факты из жизни:

  • С раннего возраста Альберт Эйнштейн ненавидел национализм любого рода и предпочитал быть «гражданином мира». Когда ему было 16 лет, он отказался от своего немецкого гражданства и в 1901 году стал гражданином Швейцарии;
  • Милева Марич была единственной женщиной-ученицей в секции Эйнштейна в Цюрихском политехническом институте. Она была увлечена математикой и наукой и была хорошим физиком, но она отказалась от своих амбиций, выйдя замуж за Эйнштейна и став матерью.
  • В 1933 году ФБР начало вести досье на Альберта Эйнштейна. Дело разрослось до 1427 страниц различных документов, посвященных сотрудничеством Эйнштейна с пацифистскими и социалистическими организациями. Дж. Эдгар Гувер даже рекомендовал выслать Эйнштейна из Америки, применив статьи закона об исключении иностранцев, но решение было отменено Госдепартаментом США.
  • У Эйнштейн была дочка, которую, по всей вероятности, он никогда не видел лично. Существование Лизерли (так звали дочь Эйнштейна) не было широко известно до 1987 года, пока не была опубликована коллекция писем Эйнштейна.
  • Второй сын Альберта, Эдуард, которого они ласково называли «Тет», имел диагноз шизофрения. Альберт никогда не видел своего сына после того, как он иммигрировал в США в 1933 году. Эдуард умер в возрасте 55 лет в психиатрической клинике.
  • Фриц Габер был немецким химиком, который помог перебраться Эйнштейну в Берлин и стал одним из его близких друзей. В Первую мировую войну Габер разработал смертельный газообразный хлор, который был тяжелее воздуха и мог стекать в окопы, сжигать горло и легкие солдат. Габера иногда называют «отцом химической войны».
  • Эйнштейн, изучая электромагнитные теории Джеймса Максвелла, обнаружил, что скорость света была постоянной, этот факт не был известен Максвеллу. Открытие Эйнштейна было прямым нарушением законы движения Ньютона и привело Эйнштейна к разработке принципа относительности.
  • 1905 год известен как «Год чуда» Эйнштейна. В этом году он представил докторскую диссертацию и 4 из его работ были опубликованы в одном из самых известных научных журналов. Опубликованные статьи имели названия: Эквивалентность материи и энергии, специальная теория относительности, броуновское движение и фотоэлектрический эффект. Эти статьи в конечном итоге изменили саму суть современной физики.

Альберт Эйнштейн – человек XX века по версии журнала «Time». Его работыперевернули развитие фундаментальной физики и наш взгляд на мир. Но одной теорией его гений обойтись не смог – Эйнштейн также является автором многих патентов на изобретения в различных странах. И даже дизайна блузки.

Человек столетия

В конце двадцатого века журнал «Time» предложил выдающимся политикам, общественным активистам и деятелям искусства выбрать человека столетия. По итогам был составлен список из ста самых влиятельных людей, и возглавил его Альберт Эйнштейн.

Удивляться не приходится: двадцатый век общепризнанно стал веком науки, и вклад Эйнштейна в нее трудно переоценить. Он изменил наш взгляд на пространство и время, вещество, энергию, создал новую теорию гравитацию. Немногим удалось, завоевав популярность прижизненно, сохранять ее в течении стольких лет и в настоящее время.

«Драмкружок, кружок по фото...»

Но удивительно незаметно для широкой общественности развивалась и другая сторона жизни Альберта Эйнштейна. Будучи великим физиком-теоретиком, он также был изобретателем и получил более пятидесяти патентов в разных странах.

Основную часть времени Эйнштейн, конечно, посвящал теоретической физике. Но в свободное время он работал над решением математических проблем в других областях или практических задач. Среди его главных работ можно выделить следующие: охлаждающую систему, разработанную вместе с Лео Сзилардом, систему воспроизведения звука в соавторстве с Рудольфом Голдшмидтом и автоматическую камеру с Густавом Баки. Что еще более удивительно, Эйнштейн является обладателем патента на дизайн блузы.

Помимо охлаждающей системы, остальные патенты Эйнштейна не получили широкого распространения и представляют собой исключительно историческую значимость. Но, обо всем по порядку.


Схема холодильника Эйнштейна-Сзиларда.

Безопасный холодильник

Первые патента Эйнштейна были посвящены охлаждающим системам или простыми словами, холодильникам. С 1926 по 1933 год он работал над этой проблемой совместно с Лео Сзилардом, выдающимся физиком венгерского происхождения, участником Манхеттенского проекта.

Базовый принцип работы холодильника прост: некоторая охлаждающая жидкость циркулирует вокруг объекта и забирает у него тепло - таким образом происходит охлаждение. Чаще всего в качестве охлаждающей жидкости выступает сжиженный газ. Выполнив свою функцию, газ нагревается и переводится в большую нишу, где, расширяясь, снова охлаждается. Затем охладитель сжижается компрессором и процесс начинается заново.

Во времена Эйнштейна в качестве охлаждающего газа использовались токсичные диоксид серы, метилхлорид и аммиак. Случаи отравления и даже смерти целых семей были нередки. Эйнштейн воспринял одну из таких трагедий близко к сердцу и задался целю создать холодильник, в котором не было бы движущихся и токсичных частей, убрав компрессор и токсичные газы.


Альберт Эйнштейн и Лео Сзилард.

Электромагнитное сердце

Основой холодильника Эйнштейна и Сзиларда стал электромагнитный насос, без прокладок и затворок, которые могут дать течь или сломаться: вместо этого они предложили концепцию человеческого сердца, которое качает кровь по организму за счет сокращения и растяжения мышц. Сплав калия и натрия под действием переменного магнитного поля совершает периодические движения, сжижая и расширяя охлаждающий газ.

Сзилард и Эйнштейн подали более 45 заявок на патенты в шести разных странах, но распространения их охлаждающая система не получила. Прототип оказался очень шумным, а последовавшая в 30-х годах Великая депрессия в целом подпортила благосостояние многих производителей. К тому же, с внедрением нетоксичного фреона отпала необходимость повышать безопасность холодильников. Изобретение Эйнштейна и Сзиларда, однако, позже нашло свое применение в 50-х годах, в технологии ядерных реакторов-размножителей.


Патент Альберта Эйнштейна и Рудольфа Голдшмидта.

Акустический слуховой аппарат

В 1922 году к Эйнштейну за экспертным мнением по поводу одной из своих разработок обратился Рудольф Голдшмидт, немецкий инженер и изобретатель. С тех пор они находились в постоянном контакте и в 1934 году запатентовали «Аппарат электромагнитного воспроизведения звука».

История этого изобретения такова: знакомая Эйнштейна, выдающаяся певица Ольга Эйснер стала терять слух, что является настоящей трагедией для любого музыканта. Эйнштейн попросил помощи Голдшмидта, чтобы создать для нее новый тип звукового аппарата.

В результате Эйнштейн и Голдшмидт запатентовали изобретение со следующим описанием: «Устройство, специально разработанное для воспроизведения звука, в котором изменения электрического тока создают движение намагниченного тела вследствие магнитострикции». Магнитострикция – явление, возникающее, например, если плотно обвить железный сердечник проводом и пустить сквозь него ток. Провод создает магнитное поле, которое, в свою очередь, меняет форму сердечника. Вибрации сердечника будут соответствовать изменению силы тока.

Предполагалось передавать вибрации сердечника через некоторого рода мембрану, которая прикреплялась бы к черепу – создать электро-акустический слуховой прибор. К сожалению, дальнейшего развития изобретение Эйнштейна-Голдшмидта не получило, а впоследствии получили развитие электронные слуховые аппараты, которые способны во много раз усиливать звуковые волны. Необходимость в электро-акустических технологиях отпала.

Схема камеры Эйнштейна-Баки.

Первая самонастраивающаяся камера

Вместе со своим давним другом Густавом Питером Баки Эйнштейн изобрел самонастраивающуюся камеру. Это произошло за несколько лет до того, как Кодак представил миру Super Six-20, известную как первая автоматическая камера - хотя стоит отметить, что Кодак и Эйнштейн-Баки использовали разные принципы работы. Камера стала изобретением, в котором Эйнштейн впервые использовал собственные физические наработки, а именно открытое им явление фотоэффекта, за которое он и был удостоен Нобелевской премии по физике в 1921 году.

Камера была запатентована в 1936 году, ее главным отличием была «адаптация к количеству света, попадающему на фотопластинку, в зависимости от освещенности и фотографируемого объекта». В ней свет попадал на фотоэлектрическую ячейку, которая вырабатывает электрической ток под действием света. При этом между ячейкой и основной линзой находился барабан с различными затемняющими пластинами. Количество попадающего на фотоячейку света определяло угол, под которым должен повернуться барабан, и какой именно фильтр нужен в данных условиях.

Блуза Эйнштейна.

И даже дизайнер?

Удивительно, но факт – Эйнштейна интересовал и дизайн одежды. В 1935 году Густав Баки в своем письме пожаловался ему, что Эмиль Майер, поверенный по делам Эйнштейна и Баки, подал заявку на патентование непромокаемой одежды без их ведома.

Возможно, эта заявка в итоге была аннулирована. Однако, как показывают записи, в 1936 году в США Эйнштейн получил патент на дизайн блузы. Модель «Альберт Эйнштейн» представлена на рисунке, и главными ее отличительными чертами были заявлены боковые прорези, также служившие рукавами, и центральная часть, идущая от воротничка к талии. К сожалению, доподлинно неизвестно, сколько экземпляров было пошито и кто красовался в блузе от именитого физика.

Немецко-швейцарско-американский физик Альберт Эйнштейн родился в Ульме, средневековом городе королевства Вюртемберг (ныне земля Баден-Вюртенберг в Германии), в семье Германа Эйнштейна и Паулины Эйнштейн, урожденной Кох. Вырос он в Мюнхене, где у его отца и дяди был небольшой электрохимический завод. Эйнштейн был тихим, рассеянным мальчиком, который питал склонность к математике, но терпеть не мог школу с ее механической зубрежкой и казарменной дисциплиной. В унылые годы, проведенные в мюнхенской гимназии Луитпольда, Эйнштейн самостоятельно читал книги по философии, математике, научно-популярную литературу. Большое впечатление произвела на него идея о космическом порядке. После того как дела отца в 1895 г. пришли в упадок, семья переселилась в Милан. Эйнштейн остался в Мюнхене, но вскоре оставил гимназию, так и не получив аттестата, и присоединился к своим родным.

Шестнадцатилетнего Эйнштейна поразила та атмосфера свободы и культуры, которую он нашел в Италии. Несмотря на глубокие познания в математике и физике, приобретенные главным образом путем самообразования, и не по возрасту самостоятельное мышление, Эйнштейн не выбрал себе профессию. Отец настаивал на том, чтобы сын избрал инженерное поприще и в будущем смог поправить шаткое финансовое положение семьи. Эйнштейн попытался сдать вступительные экзамены в Федеральный технологический институт в Цюрихе, для поступления в который не требовалось свидетельства об окончании средней школы. Не обладая достаточной подготовкой, он провалился на экзаменах, но директор училища, оценив математические способности Эйнштейна, направил его в Аарау, в двадцати милях к западу от Цюриха, чтобы тот закончил там гимназию. Через год, летом 1896 г., Эйнштейн успешно выдержал вступительные экзамены в Федеральный технологический институт. В Аарау Эйнштейн расцвел, наслаждаясь тесным контактом с учителями и либеральным духом, царившим в гимназии. Все прежнее вызывало у него настолько глубокое неприятие, что он подал официальное прошение о выходе из германского подданства, на что его отец согласился весьма неохотно.

В Цюрихе Эйнштейн изучал физику, больше полагаясь на самостоятельное чтение, чем на обязательные курсы. Сначала он намеревался преподавать физику, но после окончания Федерального института в 1901 г. и получения швейцарского гражданства не смог найти постоянной работы. В 1902 г. Эйнштейн стал экспертом Швейцарского патентного бюро в Берне, в котором прослужил семь лет. Для него это были счастливые и продуктивные годы. Он опубликовал одну работу о капиллярности (о том, что может произойти с поверхностью жидкости, если ее заключить в узкую трубку). Хотя жалованья едва хватало, работа в патентном бюро не была особенно обременительной и оставляла Эйнштейну достаточно сил и времени для теоретических исследований. Его первые работы были посвящены силам взаимодействия между молекулами и приложениям статистической термодинамики. Одна из них - "Новое определение размеров молекул" ("A new Determination of Molecular Dimensions") - была принята в качестве докторской диссертации Цюрихским университетом, и в 1905 г. Эйнштейн стал доктором наук. В том же году он опубликовал небольшую серию работ, которые не только показали его силу как физика-теоретика, но и изменили лицо всей физики. Одна из этих работ была посвящена объяснению броуновского движения - хаотического зигзагообразного движения частиц, взвешенных в жидкости. Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Через несколько лет это было подтверждено Жаном Перреном. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

В другой работе предлагалось объяснение фотоэлектрического эффекта - испускания электронов металлической поверхностью под действием электромагнитного излучения в ультрафиолетовом или каком-либо другом диапазоне. Филипп де Ленард высказал предположение, что свет выбивает электроны с поверхности металла. Предположил он и то, что при освещении поверхности более ярким светом электроны должны вылетать с большей скоростью. Но эксперименты показали, что прогноз Ленарда неверен. Между тем в 1900 г. Максу Планку удалось описать излучение, испускаемое горячими телами. Он принял радикальную гипотезу о том, что энергия испускается не непрерывно, а дискретными порциями, которые получили название квантов. Физический смысл квантов оставался неясным, но величина кванта равна произведению некоторого числа (постоянной Планка) и частоты излучения.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии. Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Как показывают проводившиеся на протяжении веков оптические эксперименты, свет может вести себя как волна, но, как свидетельствует фотоэлектрический эффект, и как поток частиц. Правильность предложенной Эйнштейном интерпретации фотоэффекта была многократно подтверждена экспериментально, причем не только для видимого света, но и для рентгеновского и гамма-излучения. В 1924 г. Луи де Бройль сделал еще один шаг в преобразовании физики, предположив, что волновыми свойствами обладает не только свет, но и материальные объекты, например электроны. Идея де Бройля также нашла экспериментальное подтверждение и заложила основы квантовой механики. Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах.

Третья, поистине замечательная работа Эйнштейна, опубликованная все в том же 1905 г. - специальная теория относительности, революционизировавшая все области физики. В то время большинство физиков полагало, что световые волны распространяются в эфире - загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 г. Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения. Нет оснований утверждать, что специальная теория относительности Эйнштейна была создана непосредственно под влиянием эксперимента Майкельсона-Морли, но в основу ее были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y и z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени, с точки зрения другого. Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода "замороженную" энергию E, с которой связана соотношением E = mc2, где c - скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

После публикации статей в 1905 г. к Эйнштейну пришло академическое признание. В 1909 г. он стал адъюнкт-профессором Цюрихского университета, в следующем году профессором Немецкого университета в Праге, а в 1912 г. - цюрихского Федерального технологического института. В 1914 г. Эйнштейн был приглашен в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма (ныне Институт Макса Планка). Германское подданство Эйнштейна было восстановлено, и он был избран членом Прусской академии наук. Придерживаясь пацифистских убеждений, Эйнштейн не разделял взглядов тех, кто был на стороне Германии в бурной дискуссии о ее роли в первой мировой войне.

После напряженных усилий Эйнштейну удалось в 1915 г. создать общую теорию относительности, выходившую далеко за рамки специальной теории, в которой движения должны быть равномерными, а относительные скорости постоянными. Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона (XVII в.), становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инерциальной массой тела, которая характеризует способность тела ускоряться под действием данной силы. Эйнштейна заинтересовало, почему эти две массы совпадают.

Он произвел так называемый "мысленный эксперимент". Если бы человек в свободно падающей коробке, например в лифте, уронил ключи, то они не упали бы на пол: лифт, человек и ключи падали бы с одной и той же скоростью и сохранили бы свои положения относительно друг друга. Так происходило бы в некой воображаемой точке пространства вдали от всех источников гравитации. Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта "горизонтально", в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела. Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения, тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Эйнштейна, американский физик Дж. А. Уилер, "пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться".

Но в тот период Эйнштейн работал не только над теорией относительности. Например, в 1916 г. он ввел в квантовую теорию понятие индуцированного излучения. В 1913 г. Нильс Бор разработал модель атома, в которой электроны вращаются вокруг центрального ядра (открытого несколькими годами ранее Эрнестом Резерфордом) по орбитам, удовлетворяющим определенным квантовым условиям. Согласно модели Бора, атом испускает излучение, когда электроны, перешедшие в результате возбуждения на более высокий уровень, возвращаются на более низкий. Разность энергии между уровнями равна энергии, поглощаемой или испускаемой фотонами. Возвращение возбужденных электронов на более низкие энергетические уровни представляет собой случайный процесс. Эйнштейн предположил, что при определенных условиях электроны в результате возбуждения могут перейти на определенный энергетический уровень, затем, подобно лавине, возвратиться на более низкий, т.е. это тот процесс, который лежит в основе действия современных лазеров.

Хотя и специальная, и общая теории относительности были слишком революционны, чтобы снискать немедленное признание, они вскоре получили ряд подтверждений. Одним из первых было объяснение прецессии орбиты Меркурия, которую не удавалось полностью понять в рамках ньютоновской механики. Во время полного солнечного затмения в 1919 г. астрономам удалось наблюдать звезду, скрытую за кромкой Солнца. Это свидетельствовало о том, что лучи света искривляются под действием гравитационного поля Солнца. Всемирная слава пришла к Эйнштейну, когда сообщения о наблюдении солнечного затмения 1919 г. облетели весь мир.

Относительность стала привычным словом. В 1920 г. Эйнштейн стал приглашенным профессором Лейденского университета. Однако в самой Германии он подвергался нападкам из-за своих антимилитаристских взглядов и революционных физических теорий, которые пришлись не ко двору определенной части его коллег, среди которых было несколько антисемитов. Работы Эйнштейна они называли "еврейской физикой", утверждая, что полученные им результаты не соответствуют высоким стандартам "арийской науки". И в 20-е гг. Эйнштейн оставался убежденным пацифистом и активно поддерживал миротворческие усилия Лиги Наций. Эйнштейн был сторонником сионизма и приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925 г.

В 1922 г. Эйнштейну была вручена Нобелевская премия по физике 1921 г. "за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта". "Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея - основой электрохимии",- заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

В то время как большинство физиков начало склоняться к принятию квантовой теории, Эйнштейн все более не удовлетворяли следствия, к которым она приводила. В 1927 г. он выразил свое несогласие со статистической интерпретацией квантовой механики, предложенной Бором и Максом Борном. Согласно этой интерпретации, принцип причинно-следственной связи неприменим к субатомным явлениям. Эйнштейн был глубоко убежден, что статистика является не более чем средством и что фундаментальная физическая теория не может быть статистической по своему характеру. По словам Эйнштейна, "Бог не играет в кости" со Вселенной. В то время как сторонники статистической интерпретации квантовой механики отвергали физические модели ненаблюдаемых явлений, Эйнштейн считал теорию неполной, если она не может дать нам "реальное состояние физической системы, нечто объективно существующее и допускающее (по крайней мере в принципе) описание в физических терминах". До конца жизни он стремился построить единую теорию поля, которая могла бы выводить квантовые явления из релятивистского описания природы. Осуществить эти замыслы Эйнштейну так и не удалось. Он неоднократно вступал в дискуссии с Бором по поводу квантовой механики, но они лишь укрепляли позицию Бора.

Когда в 1933 г. Гитлер пришел к власти, Эйнштейн находился за пределами Германии, куда он так и не вернулся. Эйнштейн стал профессором физики в новом Институте фундаментальных исследований, который был создан в Принстоне (штат Нью-Джерси). В 1940 г. он получил американское гражданство. В годы, предшествующие второй мировой войне, Э. пересмотрел свои пацифистские взгляды, чувствуя, что только военная сила способна остановить нацистскую Германию. Он пришел к выводу, что для "защиты законности и человеческого достоинства" придется "вступить в битву" с фашистами. В 1939 г. по настоянию нескольких физиков-эмигрантов Эйнштейн обратился с письмом к президенту Франклину Д.Рузвельту, в котором писал о том, что в Германии, по всей вероятности, ведутся работы по созданию атомной бомбы. Он указывал на необходимость поддержки со стороны правительства США исследований по расщеплению урана. В последующем развитии событий, которые привели к взрыву 16 июля 1945 г. первой в мире атомной бомбы в Аламогордо (штат Нью-Мексико), Эйнштейн участия не принимал.

После второй мировой войны, потрясенный ужасающими последствиями использования атомной бомбы против Японии и все ускоряющейся гонкой вооружений, Эйнштейн стал горячим сторонником мира, считая, что в современных условиях война представляла бы угрозу самому существованию человечества. Незадолго до смерти он поставил свою подпись под воззванием

Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

Первой женой Эйнштейна была Милева Марич, его соученица по Федеральному технологическому институту в Цюрихе. Они поженились в 1903 г., несмотря на жестокое противодействие его родителей. От этого брака у Эйнштейна было два сына. После пятилетнего разрыва супруги в 1919 г. развелись. В том же году Эйнштейн вступил в брак со своей двоюродной сестрой Эльзой, вдовой с двумя детьми. Эльза Эйнштейн скончалась в 1936 г. В часы досуга Эйнштейн любил музицировать. Он начал учиться игре на скрипке, когда ему исполнилось шесть лет, и продолжал играть всю жизнь, иногда в ансамбле с другими физиками, например с Максом Планком, бывшим великолепным пианистом. Нравились ему и прогулки на яхте. Эйнштейн считал, что парусный спорт необычайно способствует размышлениям над физическими проблемами. В Принстоне он стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был добрым, скромным, приветливым и несколько эксцентричным человеком, с которым можно столкнуться прямо на улице. Эйнштейн скончался в Принстоне от аневризмы аорты.

Самый знаменитый из ученых XX в. и один из величайших ученых всех времен, Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, "стоящее перед нами наподобие великой и вечной загадки". По его собственному признанию, он верил в "Бога Спинозы, являющего себя в гармонии всего сущего". Именно это "космическое религиозное чувство" побуждало Эйнштейна к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 г. Э. отказался. Помимо Нобелевской премии, он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925) и медали Франклина Франклиновского института (1935). Эйнштейн был почетным доктором многих университетов и членом ведущих академий наук мира.

Некоторые изобретения Эйнштейна

Магнитострикционный громкоговоритель

10 января 1934 года Германское патентное ведомство по заявке, поданной 25 апреля 1929 года, выдало патент № 590783 на «Устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела». Авторы изобретения — Рудольф Гольдшмидт и Альберт Эйнштейн. Магнитострикцией называют изменение размеров магнитных тел (обычно ферромагнетиков) при намагничивании. В преамбуле к патентному описанию изобретатели пишут, что силам магнитного сжатия препятствует жесткость ферромагнетика, и предлагают три способа увеличения перемещения под действием этой силы.

Первый способ показан на рис. 1 a. Несущий иглу С с диффузором ферромагнитный стержень В ввинчен в прочное U-образное магнитное ярмо А таким образом, что сжимающие стержень осевые усилия очень близки к критической величине, при которой имеют место эйлеровская потеря устойчивости и изгиб стержня. На ярмо надеты обмотки D, по которым проходит электрический ток, модулированный звуковым сигналом. Чем сильнее звук, тем сильнее намагничивание и сжатие стержня В. Поскольку стержень поставлен на грань неустойчивости, малые вариации длины приводят к сильным колебаниям в вертикальном направлении, и прикрепленный к середине стержня диффузор генерирует звук. Во втором варианте (рис. 1 б) используется неустойчивость системы из сжатой пружины Н и штока G, упирающегося острием в лунку S. Модулированный звуковым сигналом ток проходит по обмотке D. Переменная во времени намагниченность железного стержня приводит к небольшим колебаниям его длины, которые усиливаются за счет энергии теряющей устойчивость сильной пружины. В третьем варианте магнитострикционного громкоговорителя (рис. 1 в) применена схема с двумя железными стержнями B1 и B2, обмотки D которых подключены таким образом, что, когда намагниченность одного стержня увеличивается, намагниченность другого уменьшается. Тягами C1 и С2 стержни соединены с коромыслом G, подвешенным на штанге М и прикрепленным растяжками F к боковинам магнитного ярма А. Коромысло жестко связано с диффузором W. Завинчивая гайку Р на штанге М, систему переводят в состояние неустойчивого равновесия. Благодаря противофазному намагничиванию стержней B1 и B2 током звуковой частоты их деформации также совершаются в противофазе — один сжимается, другой удлиняется, и коромысло в соответствии со звуковым сигналом поворачивается относительно точки R. В этом случае также за счет использования скрытой неустойчивости происходит усиление амплитуды магнитострикционных колебаний.

Автоматическая фотокамера

Эйнштейн придумал несколько технических устройств, в том числе чувствительный электрометр и прибор, определяющий время экспозиции при фотосъемке. Теперь такое устройство называется фотоэкспонометром. Может быть, это изобретение было побочным продуктом размышлений, завершившихся созданием представления о световых квантах и объяснением фотоэффекта. Интерес к устройствам подобного рода сохранился у Эйнштейна надолго, хотя фотолюбителем он не был. Во второй половине 40-х годов Эйнштейн и Букки изобрели механизм для автоматической регулировки времени экспозиции в зависимости от освещенности. Устройство показано на рис. 2, где а, в — камера, б — сегмент переменной прозрачности. 27 октября 1936 года они получили американский патент № 2058562 на фотокамеру, автоматически подстраивающуюся под уровень освещенности. В ее передней стенке 1, помимо объектива 2, имеется еще окно 3, через которое свет попадает на фотоэлемент 4. Электрический ток, вырабатываемый фотоэлементом, поворачивает находящийся между линзами объектива легкий кольцевой сегмент 5, зачерненный так, что прозрачность его плавно изменяется от максимальной на одном конце до минимальной на другом (рис. 2 б). Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект. Таким образом, будучи раз отъюстированным, устройство при любой освещенности само регулирует количество света, падающего на фотопленку или пластинку, находящуюся в фокальной плоскости объектива 2. Но что делать, если фотографу захочется изменить диафрагму? Для этого изобретатели предлагают несколько усложненный вариант своей фотокамеры. В этом варианте на ее передней стенке 1 устанавливается поворотный диск 6 с набором отверстий 7-12 нескольких диаметров. При поворотах диска одно из таких отверстий приходится на объектив, а диаметрально противоположное — на окно фотоэлемента. Поворачивая диск за рычажок 13 на фиксированные углы, фотограф одновременно диафрагмирует и объектив и окно. Экспонометр Букки—Эйнштейна одно время был весьма популярен, его даже использовали кинооператоры в Голливуде. Заметим, что попутно здесь предложен тот самый принцип обратной связи, который лег в основу кибернетики, но до выхода основополагающей книги Норберта Винера оставалось еще 12 лет.

Гирокомпасы и индукционная электромагнитная подвеска

В 1926 году фирмой Аншютца был разработан и запущен в серийное производство весьма сложный и совершенный гироскопический прибор — прецизионный гирокомпас. В статьях и книгах по гирокомпасам непременно отмечается, что в разработке принял участие Эйнштейн. Этот гироскопический прибор двухроторный — в нем механически связаны взаимно перпендикулярные оси двух вращающихся со скоростью 20 000 об./мин роторов, по 2,3 кг каждый. Они являются также роторами трехфазных асинхронных двигателей переменного тока. Оба гироскопа (ротора) помещены внутрь полой герметичной сферы. При слове «гироскоп» большинство вспоминает устройство с ротором, ось которого закреплена в кольцах карданова подвеса. Конечно, карданов подвес, обеспечивающий ротору полную свободу поворотов вокруг трех взаимно перпендикулярных осей, — находка необычайно остроумная (рис. 3). Но для мореходного гирокомпаса такой подвес не годится: компас должен месяцами указывать строго на север, не сбиваться ни при штормах, ни при ускорениях и переменах курса судна. С течением времени ось ротора будет поворачиваться, или, как говорят моряки, «уходить». В новом гироскопе кардановых колец нет — сфepa диаметром 25 см с двумя гироскопами (двухгироскопная система в отношении качки несравненно устойчивее одногироскопной) свободно плавает в жидкости, снаружи она не касается никаких подпорок или стенок. К ней даже не подходят электрические провода, которые способны передавать какие-то механические усилия и моменты. У сферы имеются выполненные из электропроводного материала «полярные шапки» и «экваториальный пояс». Против этих электродов в жидкости находятся электроды, к которым подключены фазы электропитания. Жидкость, в которой плавает сфера, — это вода, в которую добавлено немного глицерина для придания ей антифризных свойств и кислоты — для электропроводности. Таким образом, трехфазный ток подается в гиросферу прямо через поддерживающую ее жидкость, а затем уже внутри по проводам разводится к статорным обмоткам гироскопных двигателей.

Для плавания в поддерживающей жидкости в полностью погруженном и безразличном состоянии должен соблюдаться совершенно точный баланс между ее весом и весом вытесненного раствора. Соблюсти такой баланс очень нелегко, но, даже если он и достигнут, неизбежные в этом случае температурные колебания и изменения удельных весов его нарушат. Кроме того, необходимо еще как-то центрировать гиросферу в горизонтальном направлении. Эйнштейн придумал, как осуществить центровку гиросферы в вертикальном и горизонтальном направлениях. Вблизи дна внутрь гиросферы помещается кольцевая обмотка, подключаемая к одной из фаз поданного в шар переменного тока, сама же гиросфера окружается еще одной полой металлической сферой (рис. 4). Создаваемое внутренней обмоткой гиросферы переменное магнитное поле наводит в окружающей ее, например алюминиевой, сфере вихревые токи. Согласно закону Ленца, эти токи стремятся воспрепятствовать изменению магнитного потока, которое произошло бы при любом смещении внутренней сферы относительно внешней. При этом происходит автоматическая стабилизация гиросферы. Если она, например, в результате повышения температуры стала тонуть (ведь удельный вес жидкости при нагревании вследствие ее расширения уменьшается), зазор между донными частями сфер сократится, отталкивающие силы возрастут и остановят движение. Аналогично стабилизируется гиросфера и в горизонтальном направлении.

В различных отраслях современной техники все более широкое применение находят сейчас исключающие трение и касание способы подвески, при которых подвешиваемый объект парит, или, как теперь часто говорят, левитирует. Существуют магнитная, электростатическая, сверхпроводящая магнитная и, наконец, индукционная электромагнитная подвеска, которую предложил Эйнштейн. Например, она применяется при бестигельной плавке металлов и полупроводников.

Эйнштейн: анекдоты и тайны гения

Альберт Эйнштейн был одним из тех ученых, личность которых, может быть, даже превосходит сделанные открытия. Он просто не дал возможности потомкам узнать всех его открытий. "Человек столетия" Альберт Эйнштейн скончался 18 апреля 1955 года.

Журнал Time, подводя итоги двадцатого века, выбрал трех человек, оказавших самое большое влияние на развитие человечества - Альберт Эйнштейн стал первым из них. Другими кандидатурами на это звание были президент США Франклин Делано Рузвельт и индийский философ, общественный деятель и приверженец теории ненасилия Махатма Ганди.

В газете “Дуэль” № 32 за 1997 год опубликован список из журнала “Эхо планеты” (декабрь 1994) - статья “Сто великих евреев”. В этом списке на первом месте - Моисей, выведший евреев из Египта, на втором - Иисус Христос, преданный евреями и распятый, на третьем (видимо новый Спаситель) - Эйнштейн, на четвертом - Фрейд и только на пятом - Авраам, родоначальник евреев, отмечает в своей работе о великом ученом исследователь В.И. Бояринцев.

Над открытием теории относительности специалисты не устают спорить до сих пор. Кто-то пытается доказать ее несостоятельность, есть даже те, кто попросту считают, что "нельзя увидеть во сне решение такой серьезной проблемы". Как на самом деле Эйнштейн открыл теорию относительности- всегда останется загадкой, потомкам остается лишь предполагать…

Этот человек создал загадку даже из своей смерти - его похоронили тайно, по легенде, вместе с ним закопав пепел его работ, которые он сжег перед кончиной. Эйнштейн считал, что они могут навредить человечеству. Исследователи считают, что секрет, который унес с собой Эйнштейн, действительно мог перевернуть мир. Речь не идет о бомбе - по сравнению с последними разработками ученого даже она показалась бы детской игрушкой.

Единая теория поля стала центром внимания ученого в последние годы жизни. Как пишут специалисты, "главным образом, ее действие заключается в том, чтобы с помощью одного единственного уравнения описать взаимодействие трех фундаментальных сил: электромагнитных, гравитационных и ядерных". Специалисты полагают, что Эйнштейн мог совершить феноменальное открытие, но, предвидев возможность его использования, предпочел уничтожить труд.

В одной из статей, посвященных исследованию загадки Эйнштейна, приводятся слова некоторых историков, рассказывающих о возможном открытии: "…Возникла идея создать электромагнитное поле такой напряженности, при которой световые лучи свернутся в кокон, делающий объект невидимым как для человека, так и для приборов. Эйнштейну, как сильнейшему теоретику в этой области, поручили сделать расчеты. Далее последовали события, ставшие одной из самых интересных загадок ХХ века. В 1943 году в Филадельфии случилась таинственная история, связанная с эсминцем "Элдридж". Корабль, на котором, согласно существующей версии, были установлены "генераторы невидимости", не просто исчез из поля зрения наблюдателей и экранов радаров, а будто бы провалился в иное измерение и возник лишь через некоторое время с полубезумным экипажем на борту. Но, главное, пожалуй, даже не в исчезновении корабля, а в загадочных последствиях, которые эксперимент оказал на экипаж эсминца. С моряками стали происходить невероятные вещи: одни как бы "замерзали" - выпадали из реального хода времени, другие вовсе "растворялись" в воздухе, чтобы уже никогда не появиться вновь...".

Кстати, сейчас существуют предположения, что какие-то идеи и наброски ученого все-таки были использованы Пентагоном для разработки малозаметных кораблей и самолетов.

Гением быть сложно, хотя бы потому, что современники ловят и записывают каждую сказанную фразу, которая рискует превратиться в анекдот - Эйнштейн не избежал этой участи:

"Однажды, зайдя в берлинский трамвай, Эйнштейн по привычке углубился в чтение. Потом, не глядя на кондуктора, вынул из кармана заранее отсчитанные на билет деньги.

Здесь не хватает, - сказал кондуктор.
- Не может быть, - ответил ученый, не отрываясь от книжки.
- А я вам говорю - не хватает.
Эйнштейн еще раз покачал головой, дескать, такого не может быть. Кондуктор возмутился:
- Тогда считайте, вот - 15 пфеннигов. Так что не хватает еще пяти.
Эйнштейн пошарил рукой в кармане и действительно нашел нужную монету. Ему стало неловко, но кондуктор, улыбаясь, сказал:
- Ничего, дедушка, просто нужно выучить арифметику."

"Эйнштейн обожал фильмы Чарли Чаплина, и с большой симпатией относился как к нему, так и к его трогательным персонажам. Однажды он послал Чаплину телеграмму: "Ваш фильм "Золотая лихорадка" понятен всем в мире, и я уверен, что Вы станете великим человеком. Эйнштейн".
Чаплин ответил: "Я вами восхищаюсь ещё больше. Вашу теорию относительности не понимает никто в мире, но Вы всё-таки стали великим человеком. Чаплин".

"Едут в поезде два одессита. Вместе с ними седой, взъерошенный старик. Выходит он куда-то, один его сосед спрашивает другого:
- А это кто.
- Ты чего, это ж Альберт Эйнштейн.
- Ну и что?
- Так он же нобелевский лауреат, теорию относительности изобрел.
- А это что такое?
- Ну, предположим, два волоса на голове, это много?
- Нет.
- А в супе?
- Ну, в супе...
- Вот, все относительно.Помолчал-помолчал мужик и выдает:
- И с этим приколом он собрался в Одессу?".

11 ноября 1930 года физики Альберт Эйнштейн и Лео Силард получили патент на холодильник собственной конструкции. Устройство, к сожалению, не получило распространения и не было запущено в производство. Это устройство было не единственным изобретением Альберта Эйнштейна. Мы решили рассказать о пяти известных разработках прославленного физика.

Холодильник Эйнштейна

Холодильник Эйнштейна представлял собой абсорбционный холодильник. Разрабатывать устройство физики Альберт Эйнштейн и Лео Силард начали в 1926 году. Запатентовано оно было 11 ноября 1930 года. К идее создать новый холодильник физиков подтолкнул случай, о котором они прочли в газете. В заметке говорилось об инциденте, произошедшем в одной берлинской семье. Члены этой семьи получили отравление из-за утечки диоксида серы из холодильника.

Предложенный Эйнштейном и Силардом холодильник не имел движущихся частей, в нем использовался относительно безопасный спирт.

Несмотря на то что Эйнштейн получил патент на свое изобретение, его модель холодильника не была запущена в производство. Права на патент купила фирма «Электролюкс» в 1930 году. Так как холодильники, использующие компрессор и газ фреон, были более эффективными, они вытеснили холодильник Эйнштейна. Единственный экземпляр бесследно исчез, осталось лишь несколько его фотографий.

В 2008 году группа ученых из Оксфордского университета в течение трех лет занималась созданием и развитием прототипа холодильника Эйнштейна.

Магнитострикционный громкоговоритель

Рудольф Гольдшмидт и Альберт Эйнштейн 10 января 1934 года получили патент на магнитострикционный громкоговоритель. Название патента звучало как «устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела».

Предполагалось, что этот аппарат будет служить в первую очередь в качестве слухового аппарата. Общими друзьями Эйнштейна и Гольдшмидта были супруги Ольга и Бруно Айзнер, певица и пианист. Ольга Айзнер плохо слышала. Гольдшмидт и Эйнштейн взялись ей помочь. Был ли создан прототип подобного громкоговорителя, неизвестно.

27 октября 1936 года Букки и Эйнштейн получили патент на фотокамеру, автоматически подстраивающуюся под уровень освещенности. Такая фотокамера, помимо объектива, имела еще одно отверстие, через которое свет попадал на фотоэлемент. При попадании фотонов на фотоэлемент вырабатывался электрический ток, который поворачивал находящийся между линзами объектива кольцевой сегмент. Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект.

Эйнштейн принимал участие в разработке гирокомпаса. Известно, что он сотрудничал с Аншютцем в разработке устройства. Эйнштейн, в частности, придумал, как осуществить центровку гиросферы в вертикальном и горизонтальном направлениях, предложив так называемую схему индукционной подвески.

Острый ум - изобретатель, а рассудок - наблюдатель.
Г. К. Лихтенберг

Магнитострикционный громкоговоритель

10 января 1934 г. Германское патентное ведомство по заявке, поданной 25 апреля 1929 г., выдало патент № 590783 на "Устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела". Одним из двух авторов изобретения значился доктор Рудольф Гольдшмидт из Берлина, а другой был записан так: "доктор Альберт Эйнштейн, ранее проживавший в Берлине; теперешнее местожительство неизвестно".

Магнитострикцией, как известно, называют эффект сокращения размеров магнитных тел (обычно имеются в виду ферромагнетики) при их намагничивании. В преамбуле к патентному описанию изобретатели пишут, что силам магнитного сжатия препятствует жесткость ферромагнетика. Чтобы магнитострикцию "заставить работать" (в данном случае привести в колебательное движение диффузор громкоговорителя), эту жесткость нужно как-то нейтрализовать, скомпенсировать. Эйнштейн и Гольдшмидт предлагают три варианта такой, казалось бы, неразрешимой задачи.

Рис. Три варианта магпитострикционного громкоговорителя

Первый вариант проиллюстрирован на рис. a. Несущий иглу С с диффузором ферромагнитный (железный) стержень В ввинчен в прочное U-образное магнитное ярмо А таким образом, что сжимающие стержень осевые усилия очень близки к критической величине, при которой имеет место эйлеровская потеря устойчивости - выгиб стержня в ту или другую сторону. На ярмо надеты обмотки D, по которым проходит электрический ток, модулированный звуковым сигналом. Таким образом, чем сильнее звук, тем сильнее намагничивается и, следовательно, сжимается железный стержень В. Поскольку стержень поставлен на самую грань неустойчивости, эти малые вариации его длины приводят к сильным колебаниям в вертикальном направлении; при этом прикрепленный к середине стержня диффузор генерирует звук.

Во втором варианте (рис. б) используется неустойчивость системы сжатая пружина Н - шток G, упирающийся острием в лунку S. Модулированный звуковым сигналом ток проходит по обмотке D. Переменная во времени намагниченность железного стержня приводит к небольшим колебаниям его длины, которые усиливаются за счет энергии теряющей устойчивость мощной пружины.

В третьем варианте магнитострикционного громкоговорителя (рис. в) применена схема с двумя железными стержнями B1 и B2, обмотки D которых подключены таким образом, что, когда намагниченность одного стержня увеличивается, намагниченность другого уменьшается. Тягами C1 и С2 стержни соединены с коромыслом G, подвешенным на штанге М и прикрепленным растяжками F к боковинам магнитного ярма А. Коромысло жестко связано с диффузором W. Завинчивая гайку Р на штанге М, систему переводят в состояние неустойчивого равновесия. Благодаря противофазному намагничиванию стержней B1 и B2 током звуковой частоты их деформации также совершаются в противофазе - один сжимается, другой удлиняется (сжатие ослабляется), и коромысло в соответствии со звуковым сигналом перекашивается, поворачиваясь относительно точки R. В этом случае также за счет использования "скрытой" неустойчивости происходит усиление амплитуды магнитострикционных колебаний.

X. Мельхер, знакомившийся с документами семьи Р. Гольдшмидта и беседовавший с его сыном, излагает историю появления этого изобретения следующим образом.

Р. Гольдшмидт (1876-1950) был хорошим знакомым Эйнштейна. Известный специалист в области электротехники, он на заре эры радио руководил работами по установке первой линии беспроволочной телеграфной связи между Европой и Америкой (1914 г.). Им в 1910 г. была сконструирована и построена первая в мире пригодная для целей радиотехники высокочастотная машина на 30 кгц мощностью 12 кВт. Машина для трансатлантических передач имела уже мощность 150 кВт. Гольдшмидт был также автором множества изобретений, направленных на усовершенствование звуковоспроизводящих устройств (главным образом для телефонных аппаратов), высокочастотных резонаторов и т.д.

Общими друзьями Эйнштейна и Гольдшмидта были супруги Ольга и Бруно Айзнер - известная певица и знаменитый в то время пианист. Ольга Айзнер плохо слышала - недостаток особенно досадный, если учесть ее профессию. Гольдшмидт как специалист по звуковоспроизводящей аппаратуре взялся ей помочь. Он решил сконструировать слуховой аппарат (работы по созданию таких аппаратов в то время только начинались). В этой деятельности принял участие и Эйнштейн.

Был ли в конечном счете сконструирован действующий слуховой аппарат, неизвестно. Как видно из патентного описания, изобретателей увлекла идея использования не находившего ранее применения эффекта магнитострикции, и они разработали описанные нами базирующиеся на этом эффекте громкоговорители. Насколько нам известно, это был первый звуковоспроизводящий магнитострикционный прибор. Хотя магнитострикционные слуховые аппараты распространения не получили и их нынешние собратья работают на иных принципах, магнитострикция с большим успехом используется в ультразвуковых излучателях, находящих применение во многих отраслях промышленности и техники.

Для фрау Ольги, как сообщает Мельхер, планировали создать магнитострикционный слуховой аппарат, использующий явление так называемой костной проводимости, т.е. возбуждающий звуковые колебания не воздушного столба в ухе, а непосредственно черепных костей, для чего требовалась большая мощность. Представляется, что устройство Эйнштейна-Гольдшмидта вполне отвечало этому требованию. Возможно, совместная с Гольдшмидтом деятельность не так уж и случайна и, занимаясь ею, Эйнштейн руководствовался не только желанием облегчить судьбу фрау Айзнер. Думается, что его не могла не заинтересовать и сама техническая задача - ведь мы знаем, что он имел определенный опыт в конструировании звуковоспроизводящих устройств.

Автоматическая фотокамера

Беседуя в начале 30-х годов с Рабиндранатом Тагором, Эйнштейн припомнил свои "счастливые бернские годы" и рассказал, что, работая в патентном бюро, придумал несколько технических устройств, в том числе чувствительный электрометр (о нем уже шла речь выше) и прибор, определяющий время экспозиции при фотосъемке. Теперь такое устройство называется фотоэкспонометром.

Почти нет сомнения, что принцип действия эйнштейновского фотоэкспонометра был основан на фотоэлектрическом эффекте. И как знать, может быть, это изобретение было побочным продуктом размышлений, завершившихся знаменитой статьей 1905 г. "Об одной эвристической точке зрения...", в которой было введено представление о световых квантах и с их помощью объяснены закономерности фотоэлектрического эффекта.

Любопытно, что интерес к устройствам подобного рода сохранился у Эйнштейна надолго, хотя, насколько известно, фотолюбителем он никогда не был. Так, его авторитетный биограф Ф. Франк сообщает, что где-то во второй половине 40-х годов Эйнштейн и один из его ближайших друзей, доктор медицины Г. Букки, "изобрели механизм для автоматической регулировки времени экспозиции в зависимости от освещенности" .

У нас нет никаких оснований сомневаться в достоверности сообщенных Магнусом сведений об участии Эйнштейна в создании "Нового Аншютца", а это значит, что великого теоретика, творца "обеих относительностей" без всяких натяжек можно считать изобретателем индукционной электромагнитной подвески.

Думается, что в гироскопических устройствах Аншютца перепробовано и воплощено немало конструкторских идей Эйнштейна (ведь не зря же он так часто и в течение многих лет посещал Киль!). Было бы, конечно, интересно узнать, в чем еще выразилось его участие. Но проходит время, свидетелей его работы в Киле, видимо, не осталось, и восстановить ход событий становится все труднее.

В тяжелые для Германии 20-е годы с их безудержной инфляцией и нестабильностью Эйнштейн был заинтересован в работах по гироскопическим приборам еще и просто из материальных соображений. Представляется, однако, несомненным, что он получал удовольствие от этой деятельности. Идей, причем самых оригинальных, у него всегда было предостаточно, а возможностей для их реализации Аншютц мог предоставить больше, чем кто-либо другой. Пламенный энтузиаст гироскопа располагал достаточными денежными средствами, прекрасным оборудованием и высококвалифицированными инженерами, чтобы попытаться осуществить совершенно неожиданные и нешаблонные конструктивные решения.