При повышении температуры химическое равновесие смещается. Обратимые и необратимые реакции

Состояние равновесия для обратимой реакции может длиться неограниченно долгое время (без вмешательства извне). Но если на такую систему оказать внешнее воздействие (изменить температуру, давление или концентрацию конечных либо исходных веществ), то состояние равновесия нарушится. Скорость одной из реакций станет больше по сравнению со скоростью другой. С течением времени система вновь займет равновесное состояние, но новые равновесные концентрации исходных и конечных веществ будут отличаться от первоначальных. В этом случае говорят о смещении химического равновесия в ту или иную сторону.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то это значит, что химическое равновесие сместилось вправо. Если же, наоборот, становится больше скорость обратной реакции, это значит, что химическое равновесие сместилось влево.

При смещении равновесия вправо происходит уменьшение равновесных концентрацийисходных веществ и увеличениеравновесных концентраций конечных веществ по сравнению с первоначальными равновесными концентрациями. Соответственно, при этом возрастает и выход продуктов реакции.

Смещение химического равновесия влево вызывает возрастание равновесных концентраций исходных веществ и уменьшение равновесных концентраций конечных продуктов, выход которых при этом уменьшится.

Направление смещения химического равновесия определяется с помощью принципа Ле-Шателье: «Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие (изменить температуру, давление, концентрацию одного или нескольких веществ, участвующих в реакции), то это приведет к увеличению скорости той реакции, протекание которой будет компенсировать (уменьшать) оказанное воздействие» .

Например, при увеличении концентрации исходных веществ возрастает скорость прямой реакции и равновесие смещается вправо. При уменьшении концентрации исходных веществ, наоборот, возрастает скорость обратной реакции, а химическое равновесие смещается влево.

При увеличении температуры (т.е. при нагревании системы) равновесие смещается в сторону протекания эндотермической реакции, а при ее уменьшении (т.е. при охлаждении системы) – в сторону протекания экзотермической реакции. (Если прямая реакция является экзотермической, то обратная обязательно будет эндотермической, инаоборот).

Следует подчеркнуть, что увеличение температуры, как правило, увеличивает скорость и прямой, и обратной реакции, но при этом скорость эндотермической реакции возрастает в большей степени, чем скорость экзотермической реакции. Соответственно, при охлаждениисистемы скорости прямой и обратной реакций уменьшаются, но тоже не в одинаковой степени: для экзотермической реакции существенно меньше, чем для эндотермической.

Изменение давления влияет на смещение химического равновесия только при выполнении двух условий:

    необходимо, чтобы хоть одно из веществ, участвующих в реакции, находилось в газообразном состоянии, например:

СаСО 3(т) СаО (т) + СО 2(г) - изменение давления влияет насмещение равновесия.

СН 3 СООН (ж.) + С 2 Н 5 ОН (ж.) СН 3 СООС 2 Н 5(ж.) + Н 2 О (ж.) – изменениедавления не влияет на смещение химического равновесия, т.к. ни одно из исходных или конечных веществ не находится в газообразном состоянии;

    если в газообразном состоянии находятся несколько веществ, необходимо, чтобы число молекул газа в левой части уравнения такой реакции не было равно числу молекулгаза в правой части уравнения, например:

2SO 2(г) +O 2(г) 2SO 3(г) – изменение давления влияет на смещение равновесия

I 2(г) + Н 2(г) 2НI (г) – изменение давления не влияет на смещение равновесия

При выполнении этих двух условий увеличение давления приводит к смещению равновесия в сторону реакции, протекание которой уменьшает число молекул газа в системе. В нашем примере (каталитическое горение SO 2) это будет прямая реакция.

Уменьшение давления, наоборот, смещает равновесие в сторону реакции, идущей с образованием большего числа молекул газа. В нашем примере это будет обратная реакция.

Увеличение давления вызывает уменьшение объема системы, а значит, и увеличение молярных концентраций газообразных веществ. В результате скорость прямой и обратной реакций увеличивается, но не в одинаковой степени. Понижение же давления по аналогичной схеме приводит к уменьшению скоростей прямой и обратной реакций. Но при этом скорость реакции, в сторону которой смещается равновесие, уменьшается в меньшей степени.

Катализатор не влияет на смещение равновесия, т.к. он в одинаковой степени ускоряет (или замедляет) как прямую, так и обратную реакцию. В его присутствии химическое равновесие только быстрее (или медленнее) устанавливается.

Если на систему оказывают воздействие сразу несколько факторов одновременно, то каждый из них действует независимо от других. Например, при синтезе аммиака

N 2(газ) + 3H 2(газ) 2NH 3(газ)

реакцию осуществляют при нагревании и в присутствии катализатора для увеличения ее скорости.Но при этом воздействие температуры приводит к тому, что равновесие реакции смещается влево, в сторону обратной эндотермической реакции. Это вызываетуменьшение выхода NH 3 . Чтобы компенсировать данноенежелательное действие температуры и увеличитьвыход аммиака, одновременно в системе повышают давление,которое смещает равновесие реакции вправо, т.е. в сторону образования меньшего числа молекул газа.

При этом опытным путем подбирают наиболее оптимальные условия осуществленияреакции (температуру, давление), при которых она протекала бы с достаточно большой скоростью и давала экономическирентабельный выход конечного продукта.

Принцип Ле-Шателье аналогичным образом используется в химической промышленности при производстве большого числа различных веществ, имеющих огромное значение для народного хозяйства.

Принцип Ле-Шательеприменим не только к обратимым химическим реакциям, но и к различным другим равновесным процессам: физическим, физико-химическим, биологическим.

Организм взрослого человека характеризуется относительным постоянством многих параметров, в том числе различных биохимических показателей, включающих в себя концентрации биологически активных веществ. Однако такое состояние нельзя назвать равновесным, т.к. оно не приложимо к открытым системам.

Организм человека, как любая живая система, постоянно обменивается с окружающей средой различными веществами: потребляет продукты питания и выделяет продукты их окисления и распада. Следовательно, для организма характерно стационарное состояние , определяемое как постоянство его параметров при постоянной скорости обмена с окружающей средой веществом и энергией. В первом приближении стационарное состояние можно рассматривать как ряд равновесных состояний, связанных между собой процессами релаксации. В состоянии равновесия концентрации веществ, участвующих в реакции, поддерживаются за счёт восполнения извне исходных и удаления наружу конечных продуктов. Изменение их содержания в организме не приводит, в отличие от закрытых систем, к новому термодинамическому равновесию. Система возвращается в первоначальное состояние. Таким образом, поддерживается относительное динамическое постоянство состава и свойств внутренней среды организма, обусловливающее устойчивость его физиологических функций. Данное свойство живой системы называется иначегомеостазом .

В ходе жизнедеятельности организма, находящегося в стационарном состоянии, в отличие от закрытой равновесной системы, происходит увеличение энтропии. Однако, наряду с этим, одновременно протекает и обратный процесс – уменьшение энтропии за счёт потребления из окружающей среды питательных веществ с низким значением энтропии (например, высокомолекулярных соединений – белков, полисахаридов, углеводов и др.) и выделения в среду продуктов распада. Согласно положению И.Р.Пригожина, суммарное производство энтропии для организма, находящегося в стационарном состоянии, стремится к минимуму.

Большой вклад в развитие неравновесной термодинамики внес И. Р. Пригожий , лауреат Нобелевской премии 1977 г., который утверждал, что «в любой неравновесной системе существуют локальные участки, находящиеся в равновесном состоянии. В классической термодинамике равновесие относится ко всей системе, а в неравновесной - только к ее отдельным частям».

Установлено, что энтропия в таких системах возрастает в период эмбриогенеза, при процессах регенерации и росте злокачественных новообразований.

Достигнув состояния химического равновесия, система будет находиться в нём до тех пор, пока не будут изменены внешние условия. Это приведёт к изменению параметров системы, т.е. к сдвигу химического равновесия в сторону одной из реакций. Для качественного определения направления смещения равновесия в химической реакции служит принцип Ле-Шателье - Брауна:

Если на систему, находящуюся в равновесии, оказать внешнее воздействие, т.е. изменить условия, при которых система находилась в равновесии, то в системе с большей скоростью начнут протекать процессы, УМЕНЬШАЮЩИЕ оказанное воздействие.

На состояние химического равновесия наибольшее влияние оказывают концентрация, давление, температура.

Как видно из выражения для константы скорости реакции, увеличение концентраций исходных веществ N и M приводит к возрастанию скорости прямой реакции. Говорят, что равновесие сдвинулось в сторону прямой реакции. Наоборот, увеличение концентраций продуктов смещает равновесие в сторону протекания обратной реакции.

При изменении общего давления в равновесной смеси парциальные давления всех участников реакции изменяются в одинаковое число раз. Если в реакции число моль газов не изменяется, как, например, в реакции H2 + Cl2 - 2 HCl, то состав смеси остаётся равновесным и равновесие не смещается. Если же число моль газов в реакции изменяется, то состав смеси газов в результате изменения давления станет неравновесным и одна из реакций начнёт протекать с большей скоростью. Направление смещения равновесия в этом случае зависит от того, увеличилось или уменьшилось число моль газов.

Рассмотрим, к примеру, реакцию

N2 + 3 H2 - 2 NH3

Все участники этой реакции - газы. Пусть в равновесной смеси увеличили общее давление (сжали смесь). Равновесие нарушится, в системе должны начаться процессы, которые приведут к уменьшению давления. Но давление пропорционально числу ударов молекул о стенки, т.е. числу молекул. Из уравнения реакции видно, что в результате протекания прямой реакции число молекул газов уменьшается с 4 моль до 2 моль, а в результате обратной соответственно увеличивается. Следовательно, уменьшение общего давления произойдёт, если равновесие сместится в направлении протекания прямой реакции. При уменьшении общего давления в этой системе равновесие сместится в направлении протекания обратной реакции, приводящей к увеличению числа молекул газов, т.е. к увеличению давления.

В общем случае при повышении общего давления равновесие смещается в сторону реакции, приводящей к уменьшению числа молекул газообразных веществ, а при уменьшении давления - в сторону реакции, в которой увеличивается число молекул газов.

Для определения направления смещения равновесия при изменении температуры системы необходимо знать тепловой эффект реакции, т.е. экзотермическая данная реакция или эндотермическая. При этом нужно помнить, что при протекании экзотермической реакции теплота выделяется и температура повышается. При протекании эндотермической реакции температура падает за счёт поглощения теплоты. Следовательно, при повышении температуры равновесие всегда смещается в сторону эндотермической реакции, а при понижении - в сторону экзотермической реакции. Например, в системе, где протекает обратимая реакция

Все химические реакции, в принципе, обратимы.
Это означает, что в реакционной смеси протекает как взаимодействие реагентов, так и взаимодействие продуктов. В этом смысле различие между реагентами и продуктами условное. Направление протекания химической реакции определяется условиями ее проведения (температурой, давлением,концентрацией веществ).
Многие реакции имеют одно преимущественное направление и для проведения таких реакций в противоположном направлении требуются экстремальные условия. В подобных реакциях происходит почти полное превращение реагентов в продукты.

Пример. Железо и сера при умеренном нагревании реагируют между собой с образованием сульфида железа (II), FeS при таких условиях устойчив и практически не разлагается на железо и серу:

При 200 атм и 400 0С достигается максимальное и равное 36% (по объему) содержание NH3 в реакционной смеси. При дальнейшем повышении температуры вследствие усиленного протекания обратной реакции объемная доля аммиака в смеси уменьшается.
Прямая и обратная реакции протекают одновременно в противоположных направлениях.

Во всех обратимых реакциях скорость прямой реакции уменьшается, скорость обратной реакции возрастает до тех пор, пока обе скорости не станут равными и не установится состояние равновесия.

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

ПРИНЦИП ЛЕ-ШАТЕЛЬЕ.СМЕЩЕНИЕ ХИМИЧЕСКОГО РАВНОВЕСИЯ.

Положение химического равновесия зависит от следующих парамктров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

1. Влияние температуры. В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому.

2. Влияние давления. Во всех реакциях с участием газообразных веществ, сопровождающихся изменением объема за счет изменения количества вещества при переоходе от исходных веществ к продуктам, на положение равновесия влияет давление в системе.
Влияние давления на положение равновесия подчиняется следующим правилам:

Таким образом, при переходе от исходных веществ к продуктам объем газов уменьшился вдвое. Значит, при повышении давления равновесие смещается в сторону образования NH3, о чем свидетельствуют следующие данные для реакции синтеза аммиака при 400 0С:

3. Влияние концентрации. Влияние концентрации на состояние равновесия подчиняется следующим правилам:

Химическое равновесие, отвечающее равенству скоростей прямой и обратной реакций ( = ) и минимальному значению энергии Гиббса (∆ G р,т = 0), является наиболее устойчивым состоянием системы при заданных условиях и остается неизменным до тех пор, пока сохраняются постоянными параметры, при которых равновесие установилось.

При изменении условий равновесие нарушается и смещается в сторону прямой или обратной реакции. Смещение равновесия связано с тем, что внешнее воздействие в разной степени изменяет скорость двух взаимно противоположных процессов. Через некоторое время система вновь становится равновесной, т.е. она переходит из одного равновесного состояния в другое. Новое равновесие характеризуется новым равенством скоростей прямой и обратной реакций и новыми равновесными концентрациями всех веществ в системе.

Направление смещения равновесия в общем случае определяется принципом Ле Шателье: если на систему, находящуюся в состоянии устойчивого равновесия, оказать внешнее воздействие, то смещение равновесия происходит в сторону процесса, ослабляющего эффект внешнего воздействия .

Смещение равновесия может быть вызвано изменением температуры, концентрации (давления) одного из реагентов.

Температура – тот параметр, от которого зависит величина константы равновесия химической реакции. Вопрос смещения равновесия при изменении температуры в зависимости от условий использования реакции решается путем использования уравнения изобары (1.90) - =

1. Для изотермического процесса ∆ r Н 0 (т) < 0, в правой части выражения (1.90) R > 0, T > 0, следовательно первая производная логарифма константы равновесия по температуре отрицательна < 0, т.е. ln Kp (и сама константа Кр) являются убывающими функциями температуры. При увеличении температуры константа химического равновесия (Кр) уменьшается и что согласно закону действующих масс (2.27), (2.28)соответствует смещению химического равновесия в сторону обратной (эндотермической) реакции. Именно в этом проявляется противодействие системы оказанному воздействию.

2. Для эндотермического процесса ∆ r Н 0 (т) > 0 производная логарифма константы равновесия по температуре положительна ( > 0), тема образом ln Kp и Кр являются возрастающими функциями температуры, т.е. в соответствии с законом действующих масс при увеличении температуры равновесие смещается в сторону прямой (эндотермической реакции). Однако надо помнить, что скорость как изотермического так и эндотермического процессов при повышении температуры возрастает, а при понижении понижается, но изменение скоростей и при изменении температуры неодинаково, поэтому, варьируя температуру, можно смещать равновесия в заданном направлении. Смещение равновесия может быть вызвано изменением концентрации одного из компонентов: добавлением вещества в равновесную систему или выводом из системы.

По принципу Ле Шателье при изменении концентрации одного из участников реакции равновесие смещается в сторону компенсирующую изменение, т.е. при увеличении концентрации одного из исходных веществ – в правую сторону, а при увеличении концентрации одно из продуктов реакции – в левую. Если в обратимой реакции участвуют газообразные вещества, то при изменении давления, одинаково и одновременно изменяются все их концентрации. Изменяются и скорости процессов, а следовательно, может произойти и смещение химического равновесия. Так, например, при увеличении давления (по сравнению с равновесным) на систему СаСО 3(К) СО (к) + СО 2(г) возрастает скорость обратной реакции = что приведет к смещению равновесия в левую сторону. При понижении давления на туже систему скорость обратной реакции уменьшается, и равновесие смещается в правую сторону. При увеличении давления на систему 2HCl H 2 +Cl 2 , находящуюся в состоянии равновесия, смещение равновесия не произойдет, т.к. обе скорости и возрастут одинаково.

Для системы 4HCl + О 2 2Cl 2 + 2Н 2 О (г) увеличение давления приведет к увеличению скорости прямой реакции и смещению равновесия вправо.

И так, в соответствии с принципом Ле Шателье при повышении давления равновесие смещается в сторону образования меньшего количества молей газообразных веществ в газовой смеси и соответственно в сторону уменьшения давления в системе.

И наоборот, при внешнем воздействии, вызывающем понижение давления, равновесие смещается в сторону образования большего количества молей газообразных веществ, что вызовет увеличение давления в системе и будет противодействовать произведенному воздействию.

Принцип Ле Шателье имеет большое практическое значение. На его основе можно подобрать такие условия осуществления химического взаимодействия, которые обеспечат максимальный выход продуктов реакции.

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия - скорости прямого и обратного процессов изменятся неодинаково - будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в реакции. Пусть водород, иодоводород и пары иода находятся в равновесии друг с другом при определенных температуре и давлении. Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции - реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном. В результате этого концентрации водорода и паров иода будут уменьшаться, что повлечет за собою замедление прямой реакции, а концентрация HI будет возрастать, что вызовет ускорение обратной реакции. Через некоторое время скорости прямой и обратной реакций вновь сравняются- установится новое равновесие. Но при этом концентрация HI будет теперь выше, чем она была до добавления , а концентрация - ниже.

Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, стоящих в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие смещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево - в направлении обратной реакции. В рассмотренном примере равновесие сместилось вправо. При этом то вещество , увеличение концентрации которого вызвало нарушение равновесия, вступило в реакцию - его концентрация понизилась.

Таким образом, при увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества.

Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы.

Рассмотрим влияние давления на реакцию между монооксидом азота и кислородом:

Пусть смесь газов , и находится в химическом равновесии при определенной температуре и давлении. Не изменяя температуры, увеличим давление так, чтобы объем системы уменьшился в 2 раза. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций - равновесие нарушится.

В самом деле, до увеличения давления концентрации газов имели равновесные значения , и , а скорости прямой и обратной реакций были одинаковы и определялись уравнениями:

В первый момент после сжатия концентрации газов увеличатся вдвое по сравнению с их исходными значениями и будут равны соответственно , и . При этом скорости прямой и обратной реакций будут определяться уравнениями:

Таким образом, в результате увеличения давления скорость прямой реакции возросла в 8 раз, а обратной - только в 4 раза. Равновесие в системе нарушится - прямая реакция будет преобладать над обратной. После того как скорости сравняются, вновь установится равновесие, но количество в системе возрастет, равновесие сместится вправо.

Нетрудно видеть, что неодинаковое изменение скоростей прямой и обратной реакций связано с тем, что в левой и в правой частях уравнения рассматриваемой реакции различно число молекул газов: одна молекула кислорода и две молекулы монооксида азота (всего три молекулы газов) превращаются в две молекулы газа - диоксида азота. Давление газа есть результат ударов его молекул о стенки сосуда; при прочих равных условиях давление газа тем выше, чем больше молекул заключено в данном объеме газа. Поэтому реакция, протекающая с увеличением числа молекул газов, приводит к возрастанию давления, а реакция, протекающая с уменьшением числа молекул газов, - к его понижению.

Помня об этом, вывод о влиянии давления на химическое равновесие можно сформулировать так:

При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

Нарушение равновесия вследствие изменения температуры. Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении - в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию

Поэтому при повышении температуры равновесие в системе сдвигается влево - в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе сдвигается вправо - в сторону образования .

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. "При повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции - температура в системе падает.

Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растьорение, происходит в соответствии с принципом Ле Шателье.