Обмен углеводов. Обмен углеводов - это совокупность процессов превращения углеводов в организме

Углеводы или глюциды, также как и жиры и белки, являются основными органическими соединениями нашего тела. Поэтому, если вы хотите изучить вопрос углеводного обмена в организме человека, рекомендуем сначала ознакомиться с химией органических соединений. Если же вы хотите знать, что такое углеводный обмен, и как он происходит в организме человека, не внедряясь в подробности, то наша статья для вас. Мы постараемся в более простой форме рассказать об углеводном обмене в нашем организме.

Углеводы это обширная группа веществ, которая в основном состоит из водорода, кислорода и углерода. Некоторые сложные углеводы также имеют в своем составе серу и азот.

Все живые организме на нашей планете состоят из углеводов. Растения состоят из них практически на 80 %, животные и человек содержат в себе намного меньше углеводов. Углеводы, главным образом, содержаться в печени (5-10%), мышцах (1-3%), головном мозге (меньше 0,2%).

Углеводы нам нужны в качестве источника энергии. При окислении всего 1 грамма углеводов, мы получаем 4,1 ккал энергии. Кроме того, некоторые сложные углеводы являются запасными питательными веществами, а клетчатка, хитин и гиалуроновая кислота придают тканям прочность. Углеводы также являются одним из строительных материалов более сложных молекул, таких как , нуклеиновая кислота, гликолипиды и т.д. Без участия углеводов невозможно окисление белков и жиров.

Виды углеводов

В зависимости от того, насколько углевод способен разлагаться на более простые углеводы с помощью гидролиза (т.е. расщепление с участием воды), их классифицируют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются и считаются простыми углеводами, состоящими из 1 частицы сахара. Это, например, глюкоза или фруктоза. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов, а полисахариды гидролизуются на множество (сотни, тысячи) моносахаридов.

Глюкоза не переваривается и в неизменном виде всасывается в кровь из кишечника.

Из класса олигосахаридов выделяют дисахариды – это, например, тростниковый или свекличный сахар (сахароза), молочный сахар (лактоза).

К полисахаридам относятся углеводы, которые состоят из множества моносахаридов. Это, например, крахмал, гликоген, клетчатка. В отличие от моно и дисахаридов, которые усваиваются в кишечнике практически сразу, полисахариды перевариваются продолжительное время, поэтому их называют тяжелыми или сложными. Их расщепление занимает продолжительное время, что позволяет поддерживать уровень сахара в крови в стабильном положении, без инсулиновых скачков, которые вызывают простые углеводы.

Основное переваривание углеводов происходит в соке тонких кишок.

Запас углеводов в виде гликогена в мышцах совсем маленький – около 0,1% от веса самой мышцы. А так как мышцы не могут работать без углеводов, они нуждаются в регулярной их доставке через кровь. В крови углеводы находятся в виде глюкозы, содержание которой составляет от 0,07 до 0,1%. Основные запасы углеводов в виде гликогена содержатся в печени. У человека весом в 70 кг где-то 200 гр(!) углеводов в печени. И когда мышцы «съедают» всю глюкозу из крови, в нее снова поступает глюкоза из печени (предварительно гликоген в печени расщепляется на глюкозу). Запасы в печени не вечные, поэтому необходимо восполнять ее с пищей. Если с пищей не поступают углеводы, то печень образует гликоген из жиров и белков.

Когда человек занимается физической работой, мышцы истощают все запасы глюкозы и возникает состояние, которое называется гипогликемией – в результате нарушается работа и самих мышц и еще нервных клеток. Именно поэтому важно соблюдать правильный рацион питания, в особенно питания до и после тренировки.

Регуляция углеводного обмена в организме

Как следует из вышесказанного, весь углеводный обмен сводится к уровню сахар в крови. Уровень сахара в крови зависит от того, сколько глюкозы поступает в кровь и сколько глюкозы удаляется из нее. От этого соотношения зависит весь углеводный обмен. Сахар в кровь поступает из печени и кишечника. Печень расщепляет гликоген до глюкозы только в том случае, если уровень сахара в крови падает. Эти процессы регулируются гормонами.

Уменьшение уровня сахара в крови сопровождается выделение гормона адреналина – он активизирует ферменты печени, которые отвечают за поступление глюкозы в кровь.

Углеводный обмен регулируется также двумя гормонами поджелудочной железы – инсулином и глюкагоном. Инсулин отвечает за транспорт глюкозы из крови в ткани. А глюкагон отвечает за расщепление глюкагона в печени на глюкозу. Т.е. глюкагон повышает уровень сахара в крови, а инсулин снижает. Их действие взаимосвязано.

Разумеется, если уровень сахара в крови завышен, а печень и мышцы насыщены гликогеном, то «ненужный» материал инсулин отправляет в жировое депо – т.е. откладывает глюкозу в виде жира.

Углеводы - обязательный и наиболее значительный компонент пищи. В сутки человек потребляет 400–600 г различных углеводов.

Как необходимый участник метаболизма, углеводы включены практически во все виды обмена веществ: нуклеиновых кислот (в виде рибозы и дезоксирибозы), белков (например, гликопротеинов), липидов (например, гликолипидов), нуклеозидов (например, аденозина), нуклеотидов (например, АТФ, АДФ, АМФ), ионов (например, обеспечивая энергией их трансмембранный перенос и внутриклеточное распределение).

Как важный компонент клеток и межклеточного вещества, углеводы входят в состав структурных белков (например, гликопротеинов), гликолипидов, гликозаминогликанов и других.

Как один из главных источников энергии, углеводы необходимы для обеспечения жизнедеятельности организма. Наиболее важны углеводы для нервной системы. Ткань мозга использует примерно 2/3 всей глюкозы, поступающей в кровь.

Типовые формы нарушений

Расстройства метаболизма углеводов объединяют в несколько групп их типовых форм патологии: гипогликемии, гипергликемии, гликогенозы, гексоз‑ и пентоземии, агликогенозы (рис. 8–1).

Рис. 8–1. Типовые формы нарушения углеводного обмена.

Гипогликемии

Гипогликемии - состояния, характеризующиеся снижением уровня глюкозы плазмы крови (ГПК) ниже нормы (менее 65 мг%, или 3,58 ммоль/л). В норме ГПК натощак колеблется в диапазоне 65–110 мг%, или 3,58–6,05 ммоль/л.

Причины гипогликемии

Причины гипогликемии представлены на рис. 8–2.

Рис. 8–2. Причины гипогликемии.

Патология печени

Наследственные и приобретённые формы патология печени - одна из наиболее частых причин гипогликемии. Гипогликемия характерна для хронических гепатитов, циррозов печени, гепатодистрофий (в том числе иммуноагрессивного генеза), для острых токсических поражений печени, для ряда ферментопатий (например, гексокиназ, гликогенсинтетаз, глюкозо–6‑фосфатазы) и мембранопатий гепатоцитов. К гипогликемии приводят нарушения транспорта глюкозы из крови в гепатоциты, снижение активности гликогенеза в них и отсутствие (или малое содержание) депонированного гликогена.

Нарушения пищеварения

Нарушения пищеварения - полостного переваривания углеводов, а также их пристеночного расщепления и абсорбции - приводят к развитию гипогликемии. Гипогликемия развивается также при хронических энтеритах, алкогольном панкреатите, опухолях поджелудочной железы, синдромах нарушенного всасывания.

Причины нарушений полостного переваривания углеводов

† Недостаточность  ‑амилазы поджелудочной железы (например, у пациентов с панкреатитами или опухолями железы).

† Недостаточное содержание и/или активность амилолитических ферментов кишечника (например, при хронических энтеритах, резекции кишечника).

Причины нарушений пристеночного расщепления и абсорбции углеводов

† Недостаточность дисахаридаз, расщепляющих углеводы до моносахаридов - глюкозы, галактозы, фруктозы.

† Недостаточность ферментов трансмембранного переноса глюкозы и других моносахаридов (фосфорилаз), а также белка–переносчика глюкозы GLUT5.

Патология почек

Гипогликемия развивается при нарушении реабсорбции глюкозы в проксимальных канальцах нефрона почек. Причины:

Дефицит и/или низкая активность ферментов (ферментопатия, энзимопатия), участвующих в реабсорбции глюкозы.

Нарушение структуры и/или физико‑химического состояния мембран (мембранопатии) вследствие дефицита или дефектов мембранных гликопротеинов, участвующих в реабсорбции глюкозы (подробнее см. в приложении «Справочник терминов», статья «Переносчики глюкозы» на компакт-диске).

Названные причины приводят к развитию синдрома, характеризующегося гипогликемией и глюкозурией («почечный диабет»).

Эндокринопатии

Основные причины развития гипогликемии при эндокринопатиях: недостаток эффектов гипергликемизирующих факторов или избыток эффектов инсулина.

К гипергликемизирующим факторам относят глюкокортикоиды, йодсодержащие гормоны щитовидной железы, СТГ, катехоловые амины и глюкагон.

Глюкокортикоидная недостаточность (например, при гипокортицизме вследствие гипотрофии и гипоплазии коры надпочечников). Гипогликемия развивается в результате торможения глюконеогенеза и дефицита гликогена.

Дефицит тироксина (T 4) и трийодтиронина (T 3) (например, при микседеме). Гипогликемия при гипотиреозах является результатом торможения процесса гликогенолиза в гепатоцитах.

Недостаток СТГ (например, при гипотрофии аденогипофиза, разрушении его опухолью, кровоизлиянии в гипофиз). Гипогликемия при этом развивается в связи с торможением гликогенолиза и трансмембранного переноса глюкозы.

Дефицит катехоламинов (например, при туберкулёзе с развитием надпочечниковой недостаточности). Гипогликемия при дефиците катехоламинов является следствием пониженной активности гликогенолиза.

Недостаток глюкагона (например, при деструкции  ‑клеток поджелудочной железы в результате иммунной аутоагрессии). Гипогликемия развивается в связи с торможением глюконеогенеза и гликогенолиза.

Избыток инсулина и/или его эффектов

Причины гипогликемии при гиперинсулинизме:

† активация утилизации глюкозы клетками организма,

† торможение глюконеогенеза,

† подавление гликогенолиза.

Указанные эффекты наблюдаются при инсулиномах или передозировке инсулина.

Углеводное голодание

Углеводное голодание наблюдается в результате длительного общего голодания, в том числе - углеводного. Дефицит в пище только углеводов не приводит к гипогликемии в связи с активацией глюконеогенеза (образование углеводов из неуглеводных веществ).

Длительная значительная гиперфункция организма при физической работе

Гипогликемия развивается при длительной и значительной физической работе в результате истощения запасов гликогена, депонированного в печени и скелетных мышцах.

Клинические проявления гипогликемиИ

Возможные последствия гипогликемии (рис. 8–3): гипогликемическая реакция, синдром и кома.

Рис. 8–3. Возможные последствия гипогликемии.

Гипогликемическая реакция

Гипогликемическая реакция - острое временное снижение ГПК до нижней границы нормы (как правило, до 80–70 мг%, или 4,0–3,6 ммоль/л).

Причины

† Острая избыточная, но преходящая секреция инсулина через 2–3 сут после начала голодания.

† Острая чрезмерная, но обратимая секреция через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, переедания сладкого, особенно у лиц пожилого и старческого возраста).

Проявления

† Низкий уровень ГПК.

† Лёгкое чувство голода.

† Мышечная дрожь.

† Тахикардия.

Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

Гипогликемический синдром

Гипогликемический синдром - стойкое снижение ГПК ниже нормы (до 60–50 мг%, или 3,3–2,5 ммоль/л), сочетающееся с расстройством жизнедеятельности организма.

Проявления гипогликемического синдрома приведены на рис. 8–4. По происхождению они могут быть как адренергическими (обусловленными избыточной секрецией катехоламинов), так и нейрогенными (вследствие расстройств функций ЦНС).

Рис. 8–4. Проявления гипогликемического синдрома.

Гипогликемическая кома

Гипогликемическая кома - состояние, характеризующееся падением ГПК ниже нормы (как правило, менее 40–30 мг%, или 2,0–1,5 ммоль/л), потерей сознания, значительными расстройствами жизнедеятельности организма.

Механизмы развития

Нарушение энергетического обеспечения нейронов, а также клеток других органов вследствие:

† Недостатка глюкозы.

† Дефицита короткоцепочечных метаболитов свободных жирных кислот - ацетоуксусной и  ‑гидрооксимасляной, которые эффективно окисляются в нейронах. Они могут обеспечить нейроны энергией даже в условиях гипогликемии. Однако, кетонемия развивается лишь через несколько часов и при острой гипогликемии не может быть механизмом предотвращения энергодефицита в нейронах.

† Нарушения транспорта АТФ и расстройств использования энергии АТФ эффекторными структурами.

Повреждение мембран и ферментов нейронов и других клеток организма.

Дисбаланс ионов и воды в клетках: потеря ими K + , накопление H + , Na + , Ca 2+ , воды.

Нарушения электрогенеза в связи с указанными выше расстройствами.

Принципы терапии гипогликемий

Принципы устранения гипогликемического синдрома и комы: этиотропный, патогенетический и симптоматический

Этиотропный

Этиотропный принцип направлен на ликвидацию гипогликемии и лечение основного заболевания.

Ликвидация гипогликемии

Введение в организм глюкозы:

В/в (для устранения острой гипогликемии одномоментно 25–50 г в виде 50% раствора. В последующем инфузия глюкозы в меньшей концентрации продолжается до восстановления сознания у пациента).

С пищей и напитками. Это необходимо в связи с тем, что при в/в введении глюкозы не восстанавливается депо гликогена в печени (!).

Терапия основного заболевания, вызвавшего гипогликемию (болезней печени, почек, ЖКТ, желёз внутренней секреции и др.).

Патогенетический

Патогенетический принцип терапии ориентирован на:.

Блокирование главных патогенетических звеньев гипогликемической комы или гипогликемического синдрома (расстройств энергообеспечения, повреждения мембран и ферментов, нарушений электрогенеза, дисбаланса ионов, КЩР, жидкости и других).

Ликвидацию расстройств функций органов и тканей, вызванных гипогликемией и её последствиями.

Устранение острой гипогликемии, как правило, приводит к быстрому «выключению» её патогенетических звеньев. Однако хронические гипогликемии требуют целенаправленной индивидуализированной патогенетической терапии.

Симптоматический

Симптоматический принцип лечения направлен на устранение симптомов, усугубляющих состояние пациента (например, сильной головной боли, страха смерти, резких колебаний АД, тахикардии и др.).

Углеводы являются органическими, водорастворимыми веществами. Они состоят из углерода, водорода и кислорода, с формулой (CH 2 O) n , где ‘n’ может варьировать от 3 до 7. Углеводы содержатся главным образом в растительных продуктах (за исключением лактозы).

Исходя из химической структуры, углеводы делятся на три группы:

  • моносахариды
  • олигосахариды
  • полисахариды

Типы углеводов

Моносахариды

Моносахариды являются «основными единицами» углеводов. Число атомов углерода отличает эти основные единицы друг от друга. Суффикс «оза» используется для определения этих молекул в категорию сахаров:

  • триоза - моносахарид с 3 атомами углерода
  • тетроза - моносахарид с 4 атомами углерода
  • пентоза - моносахарид с 5 атомами углерода
  • гексоза - моносахарид с 6 атомами углерода
  • гептоза - моносахарид с 7 атомами углерода

В группу гексозы входят глюкоза, галактоза и фруктоза.

  • Глюкоза, также известный как сахар, содержащийся в крови, является тем сахаром, в который превращаются все другие углеводы в организме. Глюкоза может быть получена путем пищеварения или образована в результате глюконеогенеза.
  • Галактоза в свободном виде не встречается, а чаще в сочетании с глюкозой в молочном сахаре (лактозе).
  • Фруктоза, известная также как фруктовый сахар, является самым сладким из простых сахаров. Как и следует из названия, большое количество фруктозы содержится во фруктах. В то время как определенное количество фруктозы попадает непосредственно в кровь из пищеварительного тракта, в печени она рано или поздно превращается в глюкозу.

Олигосахариды

Олигосахариды состоят из 2–10 связанных между собой моносахаридов. Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой.

  • Лактоза (глюкоза + галактоза) - единственный вид сахаров, который не встречается в растениях, а содержится в молоке.
  • Мальтоза (глюкоза + глюкоза) - встречается в пиве, крупах и прорастающих семенах.
  • Сахароза (глюкоза + фруктоза) - известный как столовый сахар, это наиболее распространенный дисахарид, поступающий в организм вместе с пищей. Он содержится в свекловичном сахаре, тростниковом сахаре, меде и кленовом сиропе.

Моносахариды и дисахариды образуют группу простых сахаров.

Полисахариды

Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой.

Типы полисахаридов:

  • Крахмал - растительная форма хранения углеводов. Крахмал существует в двух формах: амилозы или аминопектина. Амилоза представляет собой длинную неразветвленную цепь спирально закрученных молекул глюкозы, в то время как амилопектин - это сильно разветвленная группа связанных моносахаридов.
  • Пищевые волокна - это некрахмальный структурный полисахарид, который встречается в растениях и обычно трудно переваривается. Примерами пищевых волокон являются целлюлоза и пектин.
  • Гликоген - 100–30.000 соединенных вместе молекул глюкозы. Форма хранения глюкозы.

Переваривание и усвоение

Большинство углеводов мы потребляем в форме крахмала. Переваривание крахмала начинается во рту под действием амилазы слюны. Этот процесс переваривания с помощью амилазы продолжается в верхней части желудка, затем действие амилазы блокируется желудочной кислотой.

Процесс переваривания затем завершается в тонкой кишке с помощью амилазы поджелудочной железы. В результате расщепления крахмала амилазой образуются дисахарид мальтоза и короткие разветвленные цепочки глюкозы.

Эти молекулы, представленные теперь в форме мальтозы и коротких разветвленных цепочек глюкозы, далее будут расщеплены на отдельные молекулы глюкозы с помощью ферментов в клетках эпителия тонкой кишки. Те же процессы происходят при переваривании лактозы или сахарозы. В лактозе нарушена связь между глюкозой и галактозой, в результате чего образуются два отдельных моносахарида.

В сахарозе связь между глюкозой и фруктозой нарушена, в результате чего образуются два отдельных моносахарида. Отдельные моносахариды затем поступают через кишечный эпителий в кровь. При поглощении моносахаридов (таких, как декстроза, которая является глюкозой) переваривания не требуется, и всасываются они быстро.

Попав в кровь, эти углеводы, теперь в форме моносахаридов, используются по назначению. Поскольку фруктоза и галактоза в конечном итоге превращаются в глюкозу, далее я буду ссылаться на все переваренные углеводы, обозначая их как «глюкозу».

Усвоенная глюкоза

Усваиваясь, глюкоза является основным источником энергии (во время или сразу после приема пищи). Эта глюкоза катаболизируется клетками, чтобы получить энергию для образования АТФ. Глюкоза также может накапливаться в форме гликогена в мышцах и клетках печени. Но перед этим необходимо, чтобы глюкоза попала в клетки. Кроме того, глюкоза поступает в клетку различным образом в зависимости от типа клеток.

Чтобы усвоиться, глюкоза должна попасть в клетку. В этом ей помогают транспортеры (Glut-1, 2, 3, 4 и 5). В клетках, где глюкоза является основным источником энергии, например, в мозге, почках, печени и эритроцитах, поглощение глюкозы происходит свободно. Это означает, что глюкоза может поступить в эти клетки в любое время. В жировых клетках, сердце и скелетных мышцах, с другой стороны, поглощение глюкозы регулируется транспортером Glut-4. Их деятельность контролирует гормон инсулин. Реагируя на повышенный уровень глюкозы в крови, из бета-клеток поджелудочной железы высвобождается инсулин.

Инсулин связывается с рецептором на мембране клетки, которая, с помощью различных механизмов, приводит к транслокации рецепторов Glut-4 из внутриклеточных хранилищ к клеточной мембране, позволяя глюкозе попасть в клетку. Сокращение скелетных мышц также усиливает транслокацию транспортера Glut-4.

При сокращении мышц высвобождается кальций. Это увеличение концентрации кальция стимулирует транслокацию рецепторов GLUT-4, способствуя поглощению глюкозы при недостатке инсулина.

Хотя эффекты инсулина и физической нагрузки на транслокацию Glut-4 являются аддитивными, они независимы. Оказавшись в клетке, глюкоза может быть использована для удовлетворения энергопотребностей или синтезирована в гликоген и сохранена для дальнейшего использования. Глюкоза также может быть преобразована в жир и храниться в жировых клетках.

Попав в печень, глюкоза может быть использована для удовлетворения энергетических потребностей печени, сохранена в виде гликогена или преобразована в триглицериды для хранения в виде жира. Глюкоза является предшественником фосфата глицерина и жирных кислот. Печень преобразует избыток глюкозы в фосфат глицерина и жирные кислоты, которые затем соединяются для синтеза триглицеридов.

Некоторые из этих образованных триглицеридов хранятся в печени, но большинство из них вместе с белками переходят в липопротеины и секретируется в кровь.

Липопротеины, которые содержат намного больше жира, чем белка, называют липопротеинами очень низкой плотности (ЛОНП). Эти ЛОНП затем транспортируется через кровь в жировую ткань, где будут храниться как триглицериды (жиры).

Накопленная глюкоза

В организме глюкоза хранится в виде полисахарида гликогена. Гликоген состоит из сотен связанных друг с другом молекул глюкозы и хранится в мышечных клетках (около 300 граммов) и печени (около 100 граммов).

Накопление глюкозы в виде гликогена называется гликогенезом. Во время гликогенеза молекулы глюкозы поочередно добавляются в существующую молекулу гликогена.

Количество запасенного в организме гликогена определяется потреблением углеводов; у человека на низкоуглеводной диете гликогена будет меньше, чем у человека на диете с высоким содержанием углеводов.

Для использования накопленного гликогена он должен быть расщеплен на отдельные молекулы глюкозы в ходе процесса, который называемый гликогенолизом (лиз = расщепление).

Значение глюкозы

Для нормального функционирования глюкоза необходима нервной системе и головному мозгу, поскольку мозг использует его в качестве основного источника топлива. При недостаточном обеспечении глюкозой в качестве источника энергии мозг может также использовать кетоны (побочные продукты неполного распада жиров), но это скорее рассматривается как запасной вариант.

Скелетные мышцы и все другие клетки используют глюкозу для своих энергетических потребностей. Когда в организм с пищей не поступает необходимое количество глюкозы, в ход идет гликоген. После того, как запасы гликогена будут исчерпаны, организм вынужден найти способ, чтобы получить больше глюкозы, что достигается путем глюконеогенеза.

Глюконеогенезом является формирование новой глюкозы из аминокислот, глицерина, лактаты или пирувата (всех неглюкозных источников). Для того чтобы получить аминокислоты для глюконеогенеза, может быть катаболизирован мышечный белок. При обеспечении необходимым количеством углеводов глюкоза служит «сберегателем белка» и может предотвратить расщепление мышечного белка. Поэтому спортсменам так важно употреблять достаточное количество углеводов.

Хотя для углеводов не существует определенной нормы потребления, считается, что 40–50% потребляемых калорий должно поставляться углеводами. Для спортсменов это предполагаемая норма составляет 60%.

Что такое АТФ?

Аденозинтрифосфат, молекула АТФ содержит макроэргические фосфатные связи и используется для хранения и высвобождения необходимой организму энергии.

Как и по многим другим вопросам, люди продолжают спорить по поводу необходимого организму количества углеводов. Для каждого человека оно должно определяться с учетом разнообразных факторов, включая: тип тренировок, интенсивность, продолжительность и частоту, общее количество потребляемых калорий, цели тренировок и желаемый результат с учетом конституции тела.

Краткие выводы

  • Углеводы = (CH2O)n, где n варьирует от 3 до 7.
  • Моносахариды являются «основными единицами» углеводов
  • Олигосахариды состоят из 2–10 связанных между собой моносахаридов
  • Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой, к дисахаридам относится сахароза, лакроза и галактоза.
  • Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой; к ним относятся крахмал, пищевые волокна и гликоген.
  • В результате расщепления крахмала образуется мальтоза и короткие разветвленные цепочки глюкозы.
  • Чтобы усвоиться, глюкоза должна попасть в клетку. Это осуществляется транспортерами глюкозы.
  • Гормон инсулин регулирует работу транспортеров Glut-4.
  • Глюкоза может быть использована для образования АТФ, сохранена в форме гликогена или жира.
  • Рекомендуемая норма потребления углеводов - 40–60% от общего числа калорий.

Одним из главных заданий бодибилдеров и просто физически активных людей является правильный подбор продуктов и спортивных добавок. Известно, что одни и те же спортивные добавки призваны выполнять разные функции для разных спортсменов. К примеру, культуристы рассматривает аминокислоты с разветвленной цепью с точки зрения улучшения роста мышц и устойчивого синтеза мышечного белка. Но немаловажным моментом в тренировках является период наступления усталости во время интенсивных тренировок. В таких ситуациях атлетам необходима выносливость, и одним из компонентов, который способен ее повысить является цитруллин малат. Поэтому много бодибилдеров включают его в своеи предтернировочные комплексы.
Цитруллин — это аминокислота, которая получающаяся в результате соединения аминокислоты орнитин и карбамоил фосфата. В организме это происходит во время мочевого цикла, таким образом, тело избавляется от азотистых отходов. Избыток цитруллина, получаемый из добавок, позволяет мочевой цикл удалять аммиак, производимый работающими на тренировке мышцами, прежде чем он окажет эффект усталости.
Цитруллин играет важную роль в метаболических процессах организма. Кроме того цитруллин это побочный продукт, получаемый при переработке организмом такой аминокислоты как аргинин в оксид азота. Как показывают исследования, избыток цитруллина увеличивает количество аргинина в крови, что приводит к увеличению выработки оксида азота. В свою очередь большое количество азота положительно влияет на приток крови к мышцам во время тренировки, что позволяет мышечной ткани дольше находиться под нагрузкой и лучше накачиваться кровью.
Малат или яблочная кислота — солевое соединение, которое часто используется в качестве пищевого консерванта, некоторые фрукты, такие как яблоки, из-за него обладают кисловатым привкусом. Еще одним положительным свойством малата является то, что он способствует рециркуляции молочной кислоты, это помогает в борьбе с усталостью. Вместе с цитруллином, малат позволяет организму дольше выдерживать разные нагрузки.

Цитруллин в спорте

В бодибилдинге и других видах спорта цитруллин применяется довольно часто, поскольку эта добавка увеличивает производительность тренировки. Ускоряя освобождение от аммиака, цитруллин из спортивного питания позволяет отсрочить момент снижения активности водорода в мышцах, происходящее во время интенсивной физической работы. При падении активности водорода, мышца закисляется, и настает усталость.
Так как из цитруллина синтезируется аргинин, он может выступать как донатор азота, он лучше усваивается и не разрушается в печени после абсорбции из пищеварительного тракта, но этот механизм действия не является основным. Также, цитруллин угнетает ферменты, которые разрушают оксид азота. Предполагается, что цитруллин может увеличивать продукцию гормона роста, секрецию инсулина и продукцию креатина, хотя эти эффекты не доказаны. К положительным эффектам можно также добавить то, что этот препарат помогает атлетам снизить боль в мышцах после тренировки.

Как принимать и в каких дозах

Рекомендуется принимать цитруллин на пустой желудок перед тренировками, за 05-1,5 часа. Также можно дополнительно его употреблять утром и перед сном. Поскольку многие эффекты цитруллина обусловлены подъемом уровня аргинина, специфика приема тоже одинакова.
Минимальной эффективной дозой цитруллина является 6 г в сутки. Но исследования показывают, что если принимать 18 грамм в сутки, то результаты будут значительно лучшими.

Сочетание цитруллина с другими добавками

Чтобы увеличить эффективность тренировок можно комбинировать с цитруллином различные добавки.
Наиболее предпочтительное спортивное питание для сочетания:
Карнозин — помогает увеличить анаэробный порог за счет буферизации молочной кислоты, а также защитить мышцы от окислительного стресса.
L-карнитин — увеличивает энергопродукцию, за счет включения в метаболизм жиров. Позволяет улучшить физические показатели, защитить сердечно-сосудистую систему.
Креатин — увеличивает силу и мышечный рост.
Аргинин — улучшает питание мышц за счет увеличения продукции оксида азота. Увеличивает продукцию гормона роста и инсулина. Целесообразность комбинирования недостаточно обоснована.
Витамины и минералы — элементы, которые участвуют практически во всех метаболических процессах. Особенно хорошо цитруллин сочетается с витаминами группы В и цинком.

Побочные эффекты цитруллина

Доныне, в ходе клинических испытаний не было выявлено ни одного побочного эффекта цитруллина. Также не было сообщений и от атлетов, употребляющих цитруллин.

Натуральные источники цитруллина

Арбуз. Особенно богата цитруллином кожура арбуза. Кроме цитруллина арбуз содержит и другие имунностимулирующие антиоксиданты, полезные для сердечно-сосудистой системы, в том числе ликопин. Цитруллин присутствует также и в арбузных семечках.
Арахис. Арахис является хорошим источником цитруллина при относительно высоком содержании мононенасыщенных жиров, полезных для сердца. Кроме того, в арахисе много антиоксидантов и волокна, важных составляющих здорового питания.
Соевые бобы. В отличие от многих других продуктов растительного происхождения, соевые бобы содержат весь спектр незаменимых аминокислот. Это делает их весьма привлекательной пищей для вегетарианцев. В соевых бобах присутствует цитруллин, железо, медь и омега-3 жирные кислоты. Железо необходимо для формирования красных кровяных клеток, медь – для обмена веществ, а жирные кислоты – для активной мозговой деятельности и бесперебойной работы сердца.
Цитруллин также содержится и в других продуктах питания, таких как рыба, молоко, яйца, мясо, а также в луке и чесноке.

Витамины — это высокоактивные биологические вещества, которые отвечают за определенные жизненные процессы. При попадании в наш организм они способствуют активизации разных процессов. Разные витамины способны помочь укрепить иммунную систему, снижают утомляемость, улучшают восстанавливаемость при физической нагрузке, улучшают общее функциональное состояние организм и нейтрализуют вредные факторы окружающей среды.
Витаминно-минеральный комплекс (мультивитамины) — это добавки, задание которых состоит в том, чтобы обеспечить организм витаминами, минералами, а также другими важными веществами. Мультивитамины можно встретить в различных формах, они бывают в форме таблеток, капсул, пастилы, порошка, жидкости и инъекционных растворов. В нынешнее время витаминно-минеральные комплексы производят, учитывая разные факторы, такие как возраст, пол и деятельность человека. К примеру, различают такие мультивитамины: для беременных, детей, пожилых людей, для атлетов, для мужчин и женщин. Мультивитамины не содержат гормональных и вредных веществ, они не опасны для здоровья, и помогают его укрепить, а также активировать метаболические процессы.

Качество витаминно-минеральных комплексов.

Не сегодняшний день рынок спортивного питания имеет различные виды витаминно-минеральных комплексов, которые отличаются своей ценой и качеством. Но состав всех мультивитаминов очень похож.
Все дело в том во взаимодействии отдельных компонентов комплекса. Дешевые витаминно-минеральные комплексы нередко отличаются от дорогих нарушением всасывания определенных витаминов и минералов, что само собой способствует ухудшению баланса микронутриентов, которые поступают в организм, тем самым снижается и эффективность принятия данного комплекса. В дорогих препаратах наоборот присутствуют элементы, которые способствуют усвоению тех или иных элементов, а также помогают добиться синергического эффекта, когда элементы повышают свойства друг друга. Естественно, такие компоненты приносят намного больше пользы для человеческого организма.

Витамины и минералы в бодибилдинге.

Практика показывает, что как в силовых видах спорта, таких как бодибилдинг, пауэрлифтинг, так и других видах, таких как фитнес, очень сложно добиться желаемых результатов без использования витаминно-минеральных комплексов. Даже если человек употребляет достаточное количество белков и углеводов, систематически занимается спортом, он может иметь проблемы с тренировочным плато. Причиной тому может быть недостаточное употребление витаминов и минералов.
Бодибилдерам необходимо употреблять большое количество высококалорийной пищи, которая содержит мало минералов и витаминов. Они не всегда могут добавить к своему меню достаточное количество фруктов и других источников витаминов, так как это приведет к расстройству органов пищеварения. Но с другой стороны у таких спортсменов потребности организма в минералах и витаминах намного выше, чем в обычных людей. Поэтому витаминно-минеральные комплексы для них просто незаменимы.
Узнав о такой проблеме, бодибилдеры-новички сталкиваются со следующей проблемой, какой же комплекс подобрать для себя? В магазинах можно приобрести множество мультивитаминов, которые по описанию производителя являются самыми лучшими, однако в действительности хороших комплексов не так много. Как отмечалось раньше, качество витаминно-минерального комплекса определяется его матрицами, которые позволяют высвобождать вещества с определенной скоростью и в определенных комбинациях, дающие наилучший эффект усвоения. Кроме того, при занятиях спортом, особенно бодибилдингом, потребности организма существенно изменяются: одних витаминов нужно на 30% больше, других еще больше. Именно поэтому, тяжелоатлетам рекомендуется приобретать специализированные витаминно-минеральные комплексы, которые разработаны с учетом специфических потребностей организма в условиях тренинга. К тому же спортивные витаминно-минеральные комплексы разделяются по половому назначению: на мужские и женские, и в них учитываются физиологические особенности обоих полов.
Отдельно нужно отметить, что витаминно-минеральные комплексы нужно принимать как при наборе мышечной массы и увеличении силовых показателей, так и при работе на рельеф, и при похудении.

Режим приема.

Необходимо соблюдать рекомендации производителей. Обычно мультивитамины принимают на протяжении 1-2 месяцев, после чего делается перерыв не менее одного месяца. Экспертами не рекомендуется вести постоянный прием, так как организм со временем теряет возможность усваивать труднодоступные минералы из пищи, а также внутри организма уменьшается синтез витаминов.

Не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.

Для чего нужны углеводы

Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.

Основными задачами углеводов является выполнение следующих функций:

  1. Энергетическая — приблизительно 70% калорийности приходится на углеводы. Для того, чтобы реализовался процесс окисления 1 г углеводов организму требуется 4,1 ккал энергии.
  2. Строительная — принимают участие в построении клеточных компонентов.
  3. Резервная — создают депо в мышцах и печени в виде гликогена.
  4. Регуляторная — некоторые гормоны по своей природе являются гликопротеинами. Например, гормоны щитовидной железы и гипофиза — одна структурная часть таких веществ белковая, а другая — углеводная.
  5. Защитная — гетерополисахариды принимают участие в синтезе слизи, которая покрывает слизистые оболочки дыхательных путей, органов пищеварения, мочеполового тракта.
  6. Принимают участие в распознавании клеток.
  7. Входят в состав мембран эритроцитов.
  8. Являются одними из регуляторов свертываемости крови, так как являются частью протромбина и фибриногена, гепарина ( — учебник «Биологическая химия», Северин).

Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.

@ Evgeniya
adobe.stock.com

Этапы расщепления сахаридов

Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый , который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.


Этап 1 — предварительное расщепление слюной

В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.

Этап 2 — влияние желудочной кислоты на дальнейшее расщепление

Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.

Этап 3 — всасывание глюкозы в кровь

На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.

Этап 4 — насыщение и инсулиновая реакция

Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию — уменьшение количества углеводов в крови.

В плазму поступает инсулин и глюкагон из поджелудочной железы.

Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин «дырявит» основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.

Этап 5 — метаболизм углеводов в печени

На пути к полному перевариванию углеводы сталкиваются с главным защитником организма — клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.

Этап 6 — гликоген или жир

Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, «забывает» переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.

Этап 7 — вторичное расщепление

В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость ( — «Википедия»).

Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.

Особенности метаболизма по ГИ

Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их , который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.

Примерная таблица гликемического индекса с общим составом углеводов в продукте:

Особенности метаболизма по ГН

Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает . Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.

Примерная таблица гликемической нагрузки с общей калорийностью:

Инсулиновая и глюкагоновая реакция

В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.

Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.

Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.

Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье — состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.

Последующее распределение энергии

Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:

  1. У нетренированного человека с медленным обменом веществ. Гликогеновые клетки при снижении уровня глюкагона возвращаются в печень, где перерабатываются в триглицериды.
  2. У спортсмена. Гликогеновые клетки под воздействием инсулина массово запираются в мышцах, давая запас энергии для следующих упражнений.
  3. У неспортсмена с быстрым обменом веществ. Гликоген возвращается в печень, транспортируясь назад до уровня глюкозы, после чего насыщает кровь до пограничного уровня. Этим он провоцирует состояние истощения, так как несмотря на достаточное питание энергетическими ресурсами, клетки не имеют соответствующего количества кислорода.

Итог

Энергетический обмен — процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).