Клонирование: старт к долголетию. Что такое стволовые клетки? Со времен Долли много было подобных случаев, когда ученые клонировали животных

Пока Европа пытается остановить клонирование, китайские ученые совершают очередной прорыв. За кем будущее? Возможно, через 30 лет наш мир будет населен клонами людей и животных.

1. Термин «клонирование» придумал биолог Джон Холдейн в далеком 1963 году.

2. Первое успешное клонирование было совершено еще в 1885 году. Тогда удалось создать копию морского ежа.

3. В 1997 году появилась первая компания по клонированию человека. Руководители Clonaid утверждают, что в 2002 году им удалось клонировать маленькую девочку. Но ученые так и не предоставили доказательства успешного эксперимента.

4. В 2008 году FDA одобрило продажу мяса клонированных животных и их потомства.

5. Успех ученых впечатляет: за годы экспериментов им удалось клонировать собаку, кошку, обезьяну, лошадь, крысу и множество других животных.

6. Тем не менее, 95% попыток осуществить клонирование все еще приводят к неудаче.

7. Овечка Долли - первое млекопитающее, которое удалось клонировать путем пересадки ядра соматической клетки в цитоплазму яйцеклетки. Овечка Долли прожила около 7 лет. Ученым пришлось усыпить животное: Долли страдала от прогрессирующего заболевания легких и артрита.

8. Недавно китайским ученым удалось клонировать приматов. Обезьяны появились на свет 27 ноября и 5 декабря 2017 года в Шанхае. Ученые использовали метод овечки Долли.

9. До эксперимента в Китае считалось, что клонирование людей и приматов - пока что неразрешимая задача. Но шанхайский успех изменил ситуацию. Общественность взволнована: через пару лет наука может сконцентрировать внимание на клонировании человека.

10. Стоит напомнить, что 12 декабря 2008 года в Париже был подписан протокол, согласно которому клонирование людей запрещено. Но неизвестно, как изменится ситуация в будущем.

Клонирование - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных.

Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

С развитием науки в обиход вошли такие понятия, как генная инженерия, клонирование. Сначала это было захватывающие путешествие, где человек мог фантазировать, придумывать возможности, которые откроет это направление науки. Это и исцеление всех болезней, и изменение растительного и животного мира. В последние годы, когда успехи в этой области стали налицо, появились первые результаты, люди неожиданно задумались о том, что не все так просто и красиво в этом явлении. Задумались и… испугались. Отсюда и множество поверий и мифов, освещающих это явление. Точная информация о последних достижениях тщательно засекречена, поэтому ползущие слухи питают людей. Распространены как мифы о клонированных и генетически модифицированных животных, так и вымыслы об искусственно измененных растениях.

Что же, попробуем с помощью уже имеющихся данных разобраться в том, что является правдой, а что - вымыслом. Конечно же, большинство данных утверждений справедливо для цивилизованного мира и стран. Действия в подпольных лабораториях стран третьего мира не поддаются контролю и объяснениям, однако они и ограничены по возможностям, ведь с мощью государственных программ им тяжело сравниться.

Технологии генной инженерии могут помочь только людям. На самом деле огромные деньги вкладываются в применение этих технологий для животных. В США выдано более 100 лицензий на применение продукции генной инженерии для животных. В основном это - биопрепараты, вакцины, а также средства диагностики. В эту область постоянно вкладываются деньги, ежегодно на исследования тратится более 400 миллионов долларов. Вообще во всем мире каждый год на лечение животных и поддержание их здоровья тратится около 18 миллиардов долларов, из них почти 3 миллиарда - это продукция, произведенная с помощью биотехнологий.

Клонирование и генная инженерия - дело далекого будущего. Казалось бы, первые образцы были получены совсем недавно - первое животное-клон, овечка Долли в 1997 году, а первые живые существа, в которых был внедрен посторонний ген в 2004 году. Ими стали декоративные рыбки Глоуфиш, которые вобрали в себя ген морского анемона и получили возможность флюоресцировать красным светом. Технологии и возможности так стремительно развиваются, что организации, занимающиеся этим бизнесом, вовсю стали получать коммерческие заказы. В конце 2004 года хозяйке был возвращен клон недавно умершего любимого кота. И если стоимость такого нового любимца достигла 50 тысячи долларов, то покупка таких необычных рыбок вполне доступна любому. Крупные компании, занимающие биотехнологиями, успешно клонировали уже сотни голов крупного рогатого скота, однако пока на рынке нет ни их мяса, ни молока. А вообще в лабораториях уже успешно клонированы и крысы, и лошади, и кролики, и свиньи.

Домашним животным биотехнологии не нужны. Собаки и кошки получают произведенные с помощью биотехнологий вакцины, которые намного эффективнее обычных. С помощью генной терапии восстанавливается зрение у больных животных, а также излечиваются различные злокачественные опухоли и рак костей. Предлагается даже изучать (секвенировать) ДНК особо чистокровных животных для выявления полезных генов. Для одомашненных животных ученые постоянно разрабатывают все новые технологии, которые направлены на улучшение здоровья животных, увеличение их производительности. С помощью генетически модифицированного корма, который легкоусвояем и более питателен, добивается снижение затрат на содержание животных. Когда-то и искусственное осеменение казалось недопустимым, новые же технологии вскоре станут привычными, помогут улучшить породу животных, снизить риски наследственных заболеваний, укрепить общее здоровье скота.

Генная инженерия явилась причиной последних страшных эпидемий, таких как птичий грипп, коровье бешенство и другие. Эти заболевания никак не связаны с этой наукой. Наоборот, биотехнологи всего мира борются против страшных эпидемий, разрабатывая все новые вакцины. Например, в Южной Корее выведена порода коров, в организме которой не образуется белок, являющийся причиной коровьего бешенства. С помощью генных технологий ученые пытаются контролировать деятельность москитов, которые переносят малярию и другие заболевания.

Пересадка органов животных к человеку - всего лишь вымысел. Дело в том, что такая идея носится в воздухе достаточно давно. Первые серьезные эксперименты проводились еще в 80-х годах, в одной американской клинике пациенту попытались пересадить сердце обезьяны-бабуина. Однако орган проработал всего 20 минут. Наиболее близким по генному набору к человеку является свинья, поэтому ее органы успешно используются врачами для лечения людей. Сердечные клапаны этих животных пересаживают человеку, а кожу пересаживают на место обожженной. В нескольких странах пытаются создать генетически модифицированных свиней, чьи органы вообще не будут отторгаться человеческим организмом.

Известный клон - овечка Долли много болела и умерла преждевременно. Действительно, овца-знаменитость прожила чуть меньше, чем в среднем живут ее соплеменники. Причиной ее смерти стало заболевание легких, которое обычно возникает у пожилых особей. Однако нет причин считать ее смерть преждевременным старением, так как у особей, постоянно находящихся в замкнутом помещении риск такого заболевания возрастает. Долли же, в целях безопасности, практически не паслась на свежем воздухе. Отклонения в структуре хромосом были обнаружены лишь на одном из первых исследовании и в дальнейшем не подтвердились. Так что можно считать, что смерть Долли наступила от вполне естественных причин.

Животные лишь инструмент для тестирования новых биотехнологий. На самом деле технологии призваны улучшать здоровье домашних питомцев. Разрабатываются и активно вводятся в ветеринарию новые вакцины, к примеру, от бешенства. Стало гораздо легче выявлять многие заболевания на ранних стадиях, такие как кошачий СПИД. Для сельскохозяйственных животных новые разработки помогут увеличить поголовье, снизить риски генетических заболеваний. Ученые уже вывели породу коров, которые не заболевают маститом. Для диких видов проводятся работы по искусственному оплодотворению и выращиванию в пробирке эмбрионов, что позволит сохранить редкие и исчезающие виды.

Клоны все-таки отличаются от обычных животных. Ученых также заинтересовал этот вопрос, и были проведены специальные исследования, которые анализировали все аспекты деятельности животных - поведение, питание, физиологические процессы. Результаты показали, что никакой разницы по сравнению с обычными животными нет.

Клонирование никоим образом не касается диких животных. Ученые с успехом используют клонирование для сохранения исчезающих видов животных. В последние годы успешно клонированы исчезающие европейские муфлоны, быки гауры и бантенги. Клонированный образец последнего даже живет в зоопарке Сан-Диего. Многие зоопарки, не в силах пока воссоздать живые образцы животных, поэтому они создают криобанки, в которых хранятся образцы яйцеклеток и тканей исчезающих видов животных и птиц.

Продукты питания, полученные от генномодифицированных или клонированных животных - вредны. Животные, взращенные с помощью биотехнологий, отличаются от обычных животных только в лучшую сторону - и это факт. Дело в том, что люди тысячелетиями занимались выведением новых, улучшенных пород неосознанно и сравнительно недавно стали использовать генетику. При этом ученые контролируют процесс и следят за результатами куда тщательнее, чем обычный фермер, хотя бы по причине стоимости выведения одного животного. После рождения за его развитием начинают тщательно наблюдать диетологи и ветеринары. Сельскохозяйственные институты контроля тщательно наблюдают за учреждениями, которые занимаются выведением "искусственных" животных. Проведенные разными учеными в разных странах исследования развенчали миф о вреде мяса и молока клонированных животных, никакой разницы по сравнению с продуктами обычных животных обнаружено не было.

Показатели смертности при рождении у клонированных животных гораздо выше, чем у обычных. Это утверждение действительно верно, многие искусственные эмбрионы являются нежизнеспособными, а смертность при родах действительно высока. Но и при обычном выведении животных для разведения оставляют немногих, которые соответствуют заданным параметра селекционеров, остальные же, являясь, как ни грустно, побочным продуктом, умерщвляются.

Обычные животные меньше болеют, чем клоны. Это миф, так как исследования многих серьезных институтов (например, Национальная академия наук США) на протяжении почти десяти лет показали, что у клонированных животных никаких значимых отклонений от здоровья обычных особей нет.

Попадание генномодифицированных животных в естественные природные условия может быть опасно для окружающей среды. Эксперименты по генной модификации применяются исключительно к домашним и сельскохозяйственным животным. Поэтому вероятность их попаданию в дикую среду мала. Однако если вдруг необычная кошка или корова убегут от человека, то для дикой природы они не представляют никакой опасности. Для начала, следует отметить тот факт, что искусственные гибриды слабо приспособлены для жизни в естественной среде, шансов на выживание у их потомков будет крайне мало. Вызывают опасения рыбы, которые растут, чуть ли не в 10 раз быстрее своих обычных сородичей, однако и еды им надо гораздо больше, что в естественной среде, в битве за выживание осуществить им будет невозможно. Поэтому можно сказать, что природа сама защитит себя от незванных гостей.

Все исследования и эксперименты - череда издевательств над животными. Группы активистов требуют прекратить опыты над животными и задействовать компьютерные модели. На самом деле за животными-клонами и особями, используемых для экспериментов, следят особо тщательно, за ними ухаживают с особой заботой и они ни в чем не нуждаются, да и компьютерные модели не могут предоставить полной картины. Опять же, государственные органы тщательно проверяют исследовательские учреждения. Однако активисты проводят агрессивную политику, вплоть до избиения ученых и преследования их семей, что вынудило ФБР рассматривать их действия как террористические угрозы. В борьбе за права животных, которые ничуть не ущемляются, люди готовы идти на прямое нарушение прав своих сограждан! В США государство встает на защиту биомедицинских исследований, жестко карая тех, кто незаконными методами препятствует этому.

Клон является точной копией прародителя и может занять его место. Этот миф подразумевает создание клонов животных или людей, абсолютно того же возраста, внешности и характера. Многих пугает, что клон может посягнуть на место своего прародителя! Однако такие возможности существуют лишь в фантастических сюжетах.

С помощью людей-клонов можно будет выращивать нужных специалистов. Фантазия рисует многим выращивание армий сантехников или армий обученных военных. Опровергая этот миф можно заметить, что, во-первых, клонирование лишь воспроизводит набор генов, а профессиональные навыки являются приобретенными и по наследству никак не передаются, поэтому их невозможно "запрограммировать". Во-вторых, не забывайте, что клон не является чьим-то рабом - это самостоятельная личность с правами обычного человека. Кто может заставить его быть тем, кем он не хочет? Закон защитит права такого человека. Ну и самый главный довод - экономический. Стоимость клонирования человека все еще высока, поэтому, даже с учетом отработки и усовершенствования технологии, производство большого числа клонов с целью определенной их специализации попросту невыгодна.

В процессе клонирования из обычной клетки человека выделяется ядро, которое переносится в женскую яйцеклетку, в котором ядро заранее удалено. Далее такая клетка помещается в питательную среду, где она начинает делиться, со временем появляется зародыш, который в случае с человеком вынашивается в течение 9 месяцев. После рождения клон, как и обычный человек, пройдет все этапы жизни - рост и развитие. Полученная личность будет отличаться от прародителя практически всем - возрастом, характером, привычками и даже отпечатками пальцев, даже внешность будет немного отличаться, ведь даже однояйцовые близнецы отличаются друг от друга. Большое влияние на развитие клона будет оказывать обстановка, в которой тот будет расти, воспитываться.

Ровно 14 лет назад было официально объявлено об удачном клонировании овечки Долли. Но история создания живых существ с идентичным набором генов, что и у их «родителей», началась гораздо раньше, и продолжается до сих пор.
27 февраля 1997 года в английском журнале «Nature» была опубликована сенсационная статья эмбриолога и генетика Йена Уилмата из Рослиновского института (Шотландия) об успешном клонировании овечки Долли.


Она стала первым млекопитающим, рожденным с помощью метода генной инженерии. Использовав клетку молочной железы 6-летней овцы, ученый создал ее клон - особь с идентичным набором генов


Сама Долли, появившаяся на свет 5 декабря 1996 года, стала самой известной овцой в истории науки, произведя на свет 6 здоровых ягнят.


Она прожила 6,5 лет и была усыплена из-за инфекции легких и артрита 14 февраля 2003 года.


А уже 9 апреля того же года чучело Долли было выставлено в Эдинбургском королевском музее.


Позже из исходного материала (клетки молочной железы) было клонировано еще четыре овечки, которые также носят кличку Долли.


На конец 2010 года каждой из них уже исполнилось 3,5 года.
На фото - ученый Йен Уилмат, участвовавший в клонировании Долли


Явление клонирования широко распространено в живой природе при появлении на свет новых бактерий, амеб…


…и даже однояйцевых близнецов.


А вот искусственное клонирование животных оказалось непростой задачей. В 1962 г. профессор зоологии Оксфордского университета Джон Гордон впервые клонирует позвоночное – лягушку.


Следующий важный шаг - клонирование мышки Машки советским ученым Левоном Чайлахяном в Институте биофизики клетки в подмосковном Пущине в 1987 году.


Чуть позже, но еще до рождения Долли, были клонированы овечки Меган и Мораг.


Но разница в том, что Машку, Меган и Мораг ученые получили из клеток эмбрионов на ранних стадиях развития. Главной задачей по-прежнему оставалось клонировать именно взрослое животное.


Клонирование может быть полным или частичным. При частичном клонировании воссоздаётся лишь часть исходного организма – например, с помощью терапевтического клонирования уже выращены многие донорские органы.


При полном (репродуктивном) клонировании создаётся целостный новый организм с геномом, практически идентичным геному исходного. Так, вскоре после успешного эксперимента с Долли, на свет появились еще 2 овечки.


О клонировании Полли и Молли, которым был введён человеческий ген для возможного применения в медицине, было объявлено в июле 1997 года.


В 1998 году японскими учеными из исследовательского центра Ишикава были клонированы 2 коровы - Ното и Кага.


Тогда же в Нидерландах были клонированы телята Холли и Белль.


В 2001 году в техасском университете клонировали первую кошку. Как считалось в то время, это должно было положить начало целой коммерческой индустрии клонирования.


Первый в мире мул был клонирован в 2003 году в университете Айдахо. Его назвали Idaho Gem (Драгоценный камень Айдахо).


В 2005 году в Южной Корее появился на свет клон афганской борзой, по кличке Снуппи.


Факт остается фактом, несмотря на то, что ученый Hwang Woo-Suk, который провел клонирование, был обвинен в фальсификации доказательств.


В том же году были клонированы волчата Снувулф и Снувулфи, которые и сейчас доступны для наблюдения в зоопарке Сеула.


Хорьки Либби и Лили стали первыми клонированными хорьками, родившись в 2006 году в США.


В 2007 году уже другая, менее коммерциализированная, группа ученых из Национального университета Гьеонсан (Южная Корея) клонировала сразу несколько кошек.


А 8 апреля 2009 года в ОАЭ было объявлено об успешном получении первого клона верблюда. Появившуюся на свет самку назвали Инджаз.


С помощью репродуктивного клонирования удаётся сохранять редкие виды животных. Например, в 2001 году был клонирован находящийся под угрозой исчезновения гаур, - новорожденный по кличке Ной появился на свет в Массачусетсе, но, к сожалению умер от дизентерии через 48 часов после рождения.


В 2004 г. удалось восстановить считавшихся вымершими быков-бантенгов, а в данный момент японские учёные твёрдо намерены клонировать мамонта.


Однако, не все на благо науки: в августе 2008 года в южнокорейской клинике произвели клонирование собаки по заказу от частного лица.


57-летняя американка Бернанн Маккини получила клона умершего пса – лабрадора Чейса, - всего за $155 тысяч.


Говоря о клонировании, нельзя не упомянуть об отражении этой темы в кинематографе.
На фото - кадр из фильма «Парк юрского периода» (1993)


Популярная трилогия повествует о вымышленном проекте ученого Джона Хэммонда по клонированию динозавров.
На фото - кадр из фильма «Парк юрского периода 2: Затерянный мир» (1997)


События происходят на островах, на которых выжили и адаптировались к дикой природе десятки видов вымерших миллионы лет назад динозавров.
На фото - кадр из фильма «Парк юрского периода 3» (2001)

В Китае ученые впервые клонировали обезьян с помощью переноса ядра соматической клетки.

Первым животным, которое было клонирована подобным образом, стала овечка Долли. После этого ученые успешно клонировали 23 вида животных, в том числе мышей, свиней, коров, котов и собак.

Но клонировать приматов до сих пор не удавалось. Исследование китайских биологов дает возможность клонировать человека.

В Ватикане уже заявили, что эксперимент китайских ученых представляет собой угрозу человеческому роду.

Первое удачное клонирование обезьян

Китайские ученые впервые получили здоровых детенышей обезьяны, «зачатых» методом переноса ядра из соматической клетки в лишенную собственного ядра яйцеклетку.

Родившиеся детеныши яванской макаки представляют собой идентичные генетические копии, то есть клоны обезьяны-донора клеток соединительной ткани, из которых были взяты ядра для клонирования. Работа опубликована в журнале Cell.

Ученые Государственной лаборатории нейробиологии приматов Китайской академии наук проводили свои опыты в течение трех лет. Им удалось значительно ускорить процесс переноса ядра из клетки обезьяны-донора в пустую яйцеклетку, что снизило вероятность процесса отторжения.

Кроме того, они разработали специальную смесь ферментов и молекул РНК, которая защищала белковую оболочку от повреждений и заставляла яйцеклетку делиться. В исследовании говорится, что теперь процедура клонирования будет удачной в каждом третьем случае.

Результатом эксперимента стали две длиннохвостые макаки, которых назвали Чжун Чжун и Хуа Хуа. Они получили свои имена от китайского слова Zhonghua, что значит «китайский народ», в знак национальной важности этого события. Они родились восемь и шесть недель назад.

Это не первый случай клонирования обезьян, однако раньше применялся способ, при котором уже оплодотворенный эмбрион разделялся на несколько частей, что приводило к рождению нескольких генетически идентичных, как одномодовые близнецы, обезьян.

В 1996 году с помощью переноса генетической информации, взятой из соматической (неполовой) клетки, в яйцеклетку была клонирована овца Долли.

Польза клонирования

Клонирование животных в первую очередь дает более полную картину процессов развития эмбриона. Но подобные эксперименты имеют и прикладные результаты.

Например, клонирование обезьян дает возмодность создать модели генетически обусловленных заболеваний человека, которые необходимы для исследования механизмов развития заболевания и тестирования лекарств.

Wall Street Journal пишет, что большинство исследователей в Китае считает использование обезьян крайне перспективным для опытов по лечению болезней головного мозга.

Такие модели существуют на мышах, однако обезьяны генетически и физиологически гораздо ближе к человеку, потому исследования на них дают лучшие результаты.

Фибробласты плода, которые китайские ученые использовали для клонирования, хорошо поддаются генетическим модификациям, в том числе с помощью редактора генома CRISPR/Cas9.

Поэтому успешное клонирование макак именно из этих клеток означает, что создание генно-модифицированных обезьян не за горами.

Противники клонирования, в свою очередь, говорят, что животные, у клонированных животных могут быть скрытые дефекты развития, и потому они менее пригодны к жизни.

Так, у клонированной овечки Долли было слабое здоровье - она страдала от артрита и прожила всего шесть лет. Однако ученые позже выяснили, что предрасположенности к заболеваниям у Долли не было, а болела она, вероятно, из-за содержания в закрытом помещении и малой подвижности.

Клонирование человека теперь возможно

Результаты эксперимента оценили ученые из других стран. Так, профессор генетики Даррен Гриффин из Кентского университета в Великобритании говорит об этической стороне метода, поскольку он дает возможность клонировать приматов, к которым относится человек.

«Первый отчет о клонировании примата, несомненно, вызовет ряд этических вопросов, критики будут обеспокоены тем, что это может оказаться шагом на пути к клонированию человека. Преимущества подхода, однако, очевидны. Модель примата с заранее известным генетическим фоном может быть очень полезна в исследованиях», - сказал профессор.

Китайские ученые заверяют, что придерживается строгих международных рекомендаций по исследованиям на животных, однако исследователи желают, чтобы в научном сообществе был поднят вопрос - что можно и нельзя делать, когда речь идет о клонировании приматов.

«В принципе, этот метод может быть использован и для клонирования человека, но мы не собираемся этого делать. Нет абсолютно никаких планов клонировать человека», - заявил один из авторов исследования.

Возможность делать генетически идентичные копии людей появится через несколько лет. Однако очень сложно взять у взрослого человека ДНК и сделать его копию в виде младенца - без отточенной до совершенства техники перепрограммирования соматических клеток весь биологический материал от донора по итогу оказывается непригодным.

Поэтому тратить средства на клонов одних и тех же человеческих эмбрионов пока просто нецелесообразно.

Мифология клонирования

В переводе с греческого слово "klon" означает "веточка, черенок, побег" и имеет прямое отношение к вегетативному размножению. Клонирование растений черенками, почками и клубнями знакомо садоводам более 4 тысяч лет. Начиная с 70-х годов прошлого века, для клонирования растений стали использовать даже отдельные соматические (неполовые) клетки.


Можно ли в специальных условиях воспроизвести генетически точную копию любого живого существа? Символом первого клонированного млекопитающего (1996 год) стала овца Долли, страдавшая на протяжении жизни воспалением легких и артритом и насильственно усыпленная в возрасте шести лет – возрасте, равном примерно половине средней жизни нормальной овцы. Клонирование животных оказалось не таким простым в исполнении, как растений.

Собственно процесс клонирования можно разделить на несколько стадий. Сначала у женской особи берется яйцеклетка, из нее микроскопической пипеткой вытягивается ядро. В безъядерную яйцеклетку вводят другую, содержащую ДНК клонируемого организма. С момента слияния нового генетического материала с яйцеклеткой, как ожидается, должен начаться процесс размножения клеток и рост эмбриона.

Подобные ожидания основываются, по крайней мере, на двух явных научных мотивациях. Первой является желание выяснить, насколько нетронутым остается генетический материал в процессе развития организма, имеющего характерную судьбу. Вторая мотивация состоит в том, насколько факторы цитоплазмы самой яйцеклетки совместимы с привнесенным в нее для перепрограммирования генетическим материалом – например, имеет ли значение тот факт, что чужие гены и собственные гены митохондрий яйцеклетки различны? Подобных вопросов возникает множество. Обратимся к истории исследований попыток клонирования животных.

Начало истории уместно датировать 1839 годом, когда Теодор Шванн доказал свою клеточную теорию, закрепленную в учебниках биологии следующим лозунгом: клетка происходит от клетки. Клеточная теория таит в себе два противоречащих начала: наследственность и дифференциацию. Образуются ли в результате клеточного деления две идентичных дочерних клетки, или производные разные?

В 1888 году Вильгельм Роу попытался ответить на этот вопрос, разрушив горячей иголкой двуклеточный эмбрион лягушки. Опыт Роу оказался неудачным, но повторная попытка Ганса Дрейша в 1892 году разделить двух и даже четырех клеточный эмбрион морского ежа на отдельные клетки удалась: каждая из разделенных клеток выросла в нормальную личинку. Похожие результаты были достигнуты несколькими годами позже и другими учеными.

Одним из них был Ганс Спиман, разделивший в 1901 году эмбрионы амфибий и вырастивший из дочерних клеток хорошо функционирующих головастиков. Тем не менее, некоторые беспозвоночные, включая нематод, показали скорее регулятивное, нежели мозаичное развитие – после деления клетки имели разные судьбы.

Когда носителем наследственности определили несущее хромосомы ядро, внимание ученых переключилось с клеточного на ядерный потенциал. В своих дальнейших исследованиях Спиман экспериментировал уже с пересадкой ядер амфибий и морских ежей. Он извлек одно из ядер 16 клеточного эмбриона и поместил его в зародышевую цитоплазму. Слияние дало старт нормальному эмбриону.

Таким образом, было продемонстрировано, что потенциал ядер остается неизменным как минимум до этапа 16 клеток. Спиман всерьез подумывал об эксперименте, когда ему удастся пересадить в яйцеклетку ядро клетки отдельной взрослой особи, но для проведения подобных "нетравматических" операций над клетками ему не хватило ни времени, ни технических возможностей.

Время пришло после Второй мировой войны, в 1952 году, когда американцы Роберт Бригс и Томас Кинг потрясли ученый мир сообщением об удачной пересадке ядра лягушки Rana pipiens. Ядра извлекали из недифференцированных клеток бластулы – их пересадили в неоплодотворенные яйца с удаленным генетическим содержимым. После того как яйца были простимулированы к развитию, из них выросли нормальные головастики.

Однако когда ядра были извлечены из гаструлы (следующего за бластулой этапа деления), доля выживших личинок заметно уменьшилась. А ядра из более позднего периода развития вообще не дали результатов оживления. К 1960 году Бригс и Кинг пришли к неутешительному выводу, что дифференциация сопровождается прогрессирующим сужением возможности ядер стимулировать нормальное развитие организма.

В то же самое время в Англии шведский эмбриолог Майкл Фишберг совместно с коллегами Томасом Элсдейлом и Джоном Гурдоном работал над видом лягушки Xenopus laevis, более перспективным для исследований, чем Rana, поскольку там легче решались вопросы трансплантации. На примере Xenopus удалсь вырастить головастиков из ядер половозрелых особей. Это был настоящий прорыв.

Правда, продолжив кропотливую работу, Гурдон обнаружил, что ядра из более поздних стадий могут развиться во взрослую особь с меньшей вероятностью, чем из бластулы: 30% для поздних эмбриональных стадий, 6% для новорожденных головастиков и 3% для активно плавающих форм. Чем вызваны эти изменения, дифференциацией клеток или условиями трансплантации?

С накоплением знаний и развитием техники эксперименты стали более точными и обоснованными. В 1967 году Мария ди Бернардино и Кинг заявили о более чем 1200 пересадках ядер Rana, взятых из дифференцированных нервных клеток. Только в четырех случаях пересаженные хромосомы оказались нормальными, причем в трех из них имелись отклонения в развитии. Бернардино и Кинг сделали вывод, что наблюдаемое ими ненормальное развитие и отклонение хромосом от нормы возникло в результате трансплантации.

Чтобы приспособить ядра к новым цитоплазматическим условиям, Бернардино решила трансплантировать их в ооциты, а не в зрелые половые клетки. В конце 1983 Бернардино и Нэнси Хофнер показали, что пересаженное в ооцит ядро взрослой кровяной клетки способно развиться до стадии головастика. Те же ядра, но пересаженные в икринки, развивались не дальше ранней гаструлы.

На примере Xenopus Гурдон с коллегами в конце концов научились создавать плодовитых взрослых лягушек, используя ядра отдельных эпителиальных клеток пищеварительного тракта головастиков. Это означало, что используемый для пересадки генетический материал все еще содержал необходимую информацию для всего организма. Несмотря на впечатляющие результаты, вырастить полноценное земноводное с помощью трансплантации зрелого ядра в яйцеклетку или ооцит пока не удавалось.

Наряду с амфибиями проводились и опыты на млекопитающих. Еще в 1942 году были получены живые особи крыс из изолированных на этапе 2 клеточного деления бластомеров, а в 1968 году – кролики из поделившихся на 8 клеток. Следуя более ранним попыткам индуцировать слияние соматических клеток с помощью вируса, Бромхолл получил бластоцит методом микрохирургического введения ядра раннего эмбириона в яйцеклетки кролика с удаленными ядрами, а Юкио Тсонуда ввел генетически помеченные ядра в оплодотворенные яйцеклетки мыши: развитие продолжалось до фазы бластоцисты, если ядра были взяты из морулы или из внутренних клеточных масс бластоцисты.

Первое заявление о получении живой мыши после пересадки ядра принадлежит Карлу Ильменси и Питеру Хоппу. Однако их результаты не были повторены – условие, обязательное для научного доказательства, – несмотря на решительные попытки Джеймса МакГрата и Дэвора Солтера получить детенышей от пересадки ядер к неоплодотворенным яйцеклеткам мыши. Успех сопутствовал исследователям на одноклеточной стадии, при использовании индукции вирусом, но взятые в более поздней стадии ядра не удалось инициировать к развитию.

В 1979 году Стин Вилландсен вырастил отдельные взрослые клетки из восьмиклеточных эмбрионов овцы и крупного рогатого скота. В своих опытах он руководствовался возможными экономическими выгодами, которые сулит выведение пород с хорошим генетическим материалом. Как ни странно, эксперименты по пересадке ядер для крупного рогатого скота оказались более эффективными, нежели для мышей. В 1991 году Вилландсен сообщил об эксперименте по переносу 100 ядер телят, источником которых была морула. Результатом следующих экспериментов явились клоны восьми телят, полученных их эмбриона одного донора. К сожалению, все телята развивались с отклонениями и имели явные признаки патологии.

Ян Вилмут из шотландского института Рослина искал более эффективные пути генетической модификации генетического материала овец и крупного рогатого скота, нежели слепое введение ядер в яйцеклетку. В своих экспериментах он использовал для пересадки исключительно стволовые клетки мышей из внутреннего слоя бластоцист. Коллега Вилмута Кэйт Кэмпбелл был поражен полным сохранением ядрами потенциала деления даже в дифференцированных клетках. Ученые были убеждены, что секрет успешного переноса генетического материала кроется в синхронизации клеточных циклов донора и реципиента.

Они оказались первыми, кто попытался воссоздать недифференцированные стволовые клетки овцы, хотя вначале их преследовали сплошные неудачи. Чтобы повысить шансы на успех, они выдерживали культивированные клетки в состоянии покоя – для выравнивания клеточных циклов донора и неоплодотворенной яйцеклетки. После некоторой паузы, для запуска эмбрионального процесса был использован электростимулятор.

В результате таких манипуляций из 244 образцов 34 развились до стадии, когда их можно было имплантировать в матку суррогатной матери. Летом 1995 года родились 5 ягнят, из которых двое – Меган и Мораг, первые клонированные млекопитающие – дожили до половозрелого возраста, но затем не вынесли возложенной на них миссии.

Однако Вилмут и Кэмпбелл не собирались останавливаться на достигнутом. Помимо экспериментов по переносу ядер эмбриональных клеток, ученые применяли ядра культивированных фетальных фибробластов, дающих клеточные культуры с постоянным набором хромосом. Также они изучали ядра культивированных клеток молочных желез 6-летней овцы.

Так стали появляться на свет клонированные овцы. Долли оказалась единственной выжившей из 277, но теперь подобная процедура все чаще применяется при клонировании коз, мышей и телят (выживает около 3%). Многие умирают после имплантации в матку, другие – вследствие аномалий развития. Ученые считают, что причиной тому – неполное перепрограммирование генетического материала.

Задача создания сельскохозяйственных животных элитных пород стимулирует научные исследования по клонированию в этой области. Клонирование путем клеточного переноса все чаще используется и для репликации домашних приближенных. Многие люди хотели бы клонировать своих любимцев – кошек и собак. Один из калифорнийских миллионеров финансирует исследовательский проект «Missiplicity Project», целью которого является клонирование его любимой собачки Мисси.

Однако генетическая идентичность отнюдь не означает повторения характера и темперамента клона. Создатель первой в мире клонированной кошки Cc (англ. Carbon copy – напечатанный через копирку) Дуан Крэмер из Сельскохозяйственного и политехнического университета в Техасе замечает, что Сс нельзя в полной мере считать копией «прародителя» Рейнбоу: она более любознательна и игрива, чем Рейнбоу. Кроме темперамента, Сс отличается от Рейнбоу окрасом.

Значительные различия клонов отмечают и другие ученые. Свинья-клон по кличке Обжора с удовольствием ест все подряд и бежит на все что движется, тогда как ее клонированная сестра Привереда воротит нос от апельсинов и брыкается, когда ее берут на руки. Более того, у клонов наблюдаются значительные физические различия в густоте шерсти и количестве зубов. Попытка Роберта Ланза из Массачусетского технологического института в Вустере клонировать обезьяну-алкоголика по кличке Лютик, так до сих пор не увенчалась успехом. Ученые, впрочем, не отчаиваются, и продолжают исследования.

Люди – тоже животные, поэтому эксперименты с «братьями меньшими» являются своего рода моделью для человека. Репродуктивное клонирование, при котором человеческий эмбрион из соматической клетки имплантируется в матку, запрещено законом в большинстве стран. Больше число смертей и аномалий развития при репродуктивном клонировании мышей и сельскохозяйственных животных делают эту технологию неприемлемой для человека в настоящее время. Однако даже если однажды технология станет эффективной, людям не избежать ряда социальных и этических проблем.

О том, что человек слишком сложное существо для проведения над ним манипуляций по клонированию, свидетельствуют данные из реальной медицины по изучению нормального развития плода в утробе матери. На рисунке упрощенно представлены врожденные нарушения морфогенеза:

Согласно международной классификации все врожденные дефекты развития подразделяются на 4 группы: врожденные пороки развития, деформации, дизрупции, и дисплазии.

Врожденный порок развития – морфологический или анатомический дефект органа, части органа или области тела в результате генетически детерминированного нарушения эмбриональной дифференцировки.

Деформация – анатомическое нарушение формы или положения органа или части тела в результате механических воздействий на плод без нарушений эмбриональной дифференцировки.

Дизрупция – морфологический или анатомический дефект органа, части органа или области тела в результате внешне средового воздействия на эмбриональное развитие.

Дисплазия – морфологический дефект клеток или тканевых структур в результате генетически детерминированного нарушения дифференцировки клеток или тканей.

Изолированные врожденные дефекты развития, как правило, не вызывают особых трудностей в диагностике или хирургическом лечении, так как современная детская хирургия обладает колоссальным опытом лечения многих патологических состояний подобного типа. Что касается множественных врожденных дефектов развития, то к ним опыт и знания о диагностике и лечении изолированных врожденных дефектов применимы лишь в ограниченной мере или неприменимы вообще.

Приблизительно с середины 50-х годов потребности клинической практики способствовали расширению научно-исследовательской работы с целью изучения этиологии и патогенеза множественных врожденных дефектов развития. Именно в 50-е годы в клинической медицине начал формироваться обширный раздел, позднее названный синдромологией.

Вероятно, началом его возникновения можно считать появление знаменитой энциклопедии Лайбера и Ольбрих "Dictionary of Clinical Syndromes" (Urban and Schwarzenberg, Munich, 1957), в которой описывались сотни синдромов и их синонимов, а в последующих изданиях этой энциклопедии анализировались этиология, патогенез и современная номенклатура этих состояний.

С развитием методов современной медицины и генетики стали описываться уже сотни новых синдромальных форм патологии человека. Хорошо известный каталог Мак Кьюсика в электронном варианте в сети Интернет насчитывает уже более 5000 нормальных и патологических признаков человека, наследующихся согласно законам Менделя, и число этих признаков увеличивается ежемесячно.

Известная Лондонская база данных по синдромологии в настоящее время насчитывает более 2 500 синдромов, и каждый год в периодической печати описывается 10-20 "новых" нозологических форм синдромальной патологии человека, и, по-видимому, этот процесс описания "новых" синдромов нескончаем. К началу 80-х годов объем информации в этой области стал так велик и разнообразен, что потребовалась унификация современной терминологии, касающейся определения синдромов и сходных форм множественного поражения человеческого организма.
1