Что такое радиус кривизны в линзах физика. Определение фокусного расстояния тонкой линзы

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ

СОБИРАТЕЛЬНОЙ И РАССЕИВАЮЩЕЙ ЛИНЗ

Элементарная теория тонких линз приводит к простым соотношениям между фокусным расстоянием тонкой линзы, с одной стороны, и расстоянием от линзы до предмета и до его изображения – с другой.

Простой оказывается связь между размерами объекта, его изображения, даваемого линзой, и их расстояниями до линзы. Определяя на опыте названные величины, нетрудно по упомянутым соотношениям вычислить фокусное расстояние тонкой линзы с точностью, вполне достаточной для большинства случаев.

Упражнение 1

Определение фокусного расстояния собирательной линзы

На расположенной горизонтально оптической скамье могут перемещаться на ползушках следующие приборы: матовый экран со шкалой, линза , предмет (вырез в виде буквы F), осветитель . Все эти приборы устанавливаются так, чтобы центры их лежали на одной высоте, плоскости экранов были перпендикулярны к длине оптической скамьи, а ось линзы ей параллельна. Расстояния между приборами отсчитываются по левому краю ползушки на шкале линейки, расположенной вдоль скамьи.

Определение фокусного расстояния собирательной линзы производится следующими способами.

Способ 1. Определение фокусного расстояния по расстоянию предмета

и его изображения от линзы.

Если обозначить буквами а и b расстояния предмета и его изображения от линзы, то фокусное расстояние последней выразится формулой

или ; (1)

(эта формула справедлива только в том случае, когда толщина линзы мала по сравнению с a и b ).

Измерения . Поместив экран на достаточно большом расстоянии от предмета, ставят линзу между ними и передвигают ее до тех пор, пока не получат на экране отчетливое изображение предмета (буква F ). Отсчитав по линейке, расположенной вдоль скамьи, положение линзы, экрана и предмета, передвигают ползушку с экраном в другое положение и вновь отсчитывают соответствующее положение линзы и всех приборов на скамье.

Ввиду неточности визуальной оценки резкости изображения, измерения рекомендуется повторить не менее пяти раз. Кроме того, в данном способе полезно проделать часть измерений при увеличенном, а часть при уменьшенном изображении предмета. Из каждого отдельного измерения по формуле (1) вычислить фокусное расстояние и из полученных результатов найти его среднее арифметическое значение.

Способ 2. Определение фокусного расстояния по величине предмета и

его изображения, и по расстоянию последнего от линзы.

Обозначим величину предмета через l. Величину его изображения через L и расстояние их от линзы (соответственно) через a и b . Эти величины связаны между собой известным соотношением

.

Определяя отсюда b (расстояние предмета до линзы) и подставляя его в формулу (1), легко получить выражение для f через эти три величины:

. (2)

Измерения. Ставят линзу между экраном и предметом так, чтобы на экране со шкалой получилось сильно увеличенное и отчетливое изображение предмета, отсчитывают положение линзы и экрана. Измеряют при помощи линейки величину изображения на экране. Размеры предмета «l » в мм даны на рис.1.

Измерив расстояние от изображения до линзы, находят фокусное расстояние до линзы по формуле (2).

Изменяя расстояние от предмета до экрана, повторяют опыт несколько раз.

Способ 3. Определение фокусного расстояния по величине перемещения линзы

Если расстояние от предмета до изображения, которое обозначим через А , более 4 f , то всегда найдутся два таких положения линзы, при которых на экране получается отчетливое изображение предмета: в одном случае уменьшенное, в другом – увеличенное (рис.2).

Нетрудно видеть, что при этом оба положения линзы будут симметричны относительно середины расстояния между предметом и изображением. Действительно, воспользовавшись уравнением (1), можно написать для первого положения линзы (рис.2).

;

для второго положения

.

Приравняв правые части этих уравнений, найдем

.

Подставив это выражение для x в ( A - e - x ) , легко найдем, что

;

то есть, что действительно оба положения линзы находятся на равных расстояниях от предмета и изображения и, следовательно, симметричны относительно середины расстояния между предметом и изображением.

Чтобы получить выражение для фокусного расстояния, рассмотрим одно из положений линзы, например, первое. Для него расстояние от предмета до линзы

.

А расстояние от линзы до изображения

.

Подставляя эти величины в формулу (1), найдем

. (3)

Этот способ является принципиально наиболее общим и пригодным как для толстых, так и для тонких линз. Действительно, когда в предыдущих случаях пользовались для расчетов величинами а и b , то подразумевали отрезки, измеренные до центра линзы. На самом же деле следовало эти величины измерять от соответствующих главных плоскостей линзы. В описываемом же способе эта ошибка исключается благодаря тому, что в нем измеряется не расстояние от линзы, а лишь величина ее перемещения.

Измерения. Установив экран на расстоянии большем 4 f от предмета (ориентировочно значение f берут из предыдущих опытов), помещают линзу между ними и, передвигая ее, добиваются получения на экране отчетливого изображения предмета, например, увеличенного. Отсчитав по шкале соответствующее положение линзы, сдвигают ее в сторону и вновь устанавливают. Эти измерения производят пять раз.

Передвигая линзу, добиваются второго отчетливого изображения предмета – уменьшенного и вновь отсчитывают положение линзы по шкале. Измерения повторяют пять раз.

Измерив расстояние А между экраном и предметом, а также среднее значение перемещений е , вычисляют фокусное расстояние линзы по формуле (3).

Упражнение 2

Определение фокусного расстояния рассеивающей линзы

Укрепленная на ползушках рассеивающая и собирательная линзы, матовый экран и освещенный предмет размещают вдоль оптической скамьи и устанавливают согласно тем же правилам, как и в упражнении 1.


Измерение фокусного расстояния рассеивающей линзы производится следующим способом. Если на пути лучей, выходящих из точки А и сходящихся в точке D после преломления в собирательной линзе В (рис.3), поставить рассеивающую линзу так, чтобы расстояние С D было меньше ее фокусного расстояния, то изображение точки А удалится от линзы В. Пусть, например, оно переместится в точку Е . В силу оптического принципа взаимности мы можем теперь мысленно рассмотреть лучи света, распространяющиеся из точки Е в обратную сторону. Тогда точка будет мнимым изображением точки Е после прохождения лучей через рассеивающую линзу С.

Обозначая расстояние ЕС буквой а , D С – через b и замечая, что f и b имеют отрицательные знаки, получим согласно формуле (1)

, т.е. . (4)

Измерения. На оптической скамье размещают освещенный предмет (F), собирающую линзу, рассеивающую линзу, рассеивающую линзу, матовый экран (в соответствии с рис.3). Положения матового экрана и рассеивающей линзы могут быть выбраны произвольно, но удобнее расположить их в точках, координаты которых кратны 10.

Таким образом, расстояние а определяется как разность координат точек Е и С (координату точки С записать). Затем, не трогая экран и рассеивающую линзу, перемещают собирающую линзу до тех пор, пока на экране не получится четкое изображение предмета (точность результата эксперимента очень зависит от степени четкости изображения).

После этого рассеивающую линзу убирают, а экран перемещают к собирающей линзе и вновь получают четкое изображение предмета. Новое положение экрана определит координату точки D .

Очевидно, разность координат точек С и D определит расстояние b , что позволит по формуле (4) вычислить фокусное расстояние рассеивающей линзы.

Таких измерений проделывают не менее пяти раз, выбирая каждый раз новое положение экрана и рассеивающей линзы.

Примечание. Анализируя расчетную формулу

легко приходим к выводу, что точность определения фокусного расстояния очень зависит от того, насколько сильно отличаются отрезки b и а . Очевидно, что при а близком к b малейшие погрешности в их измерении могут сильно исказить результат.

Рассмотрим теперь, другой случай, имеющий большое практическое значение. Большинство линз, которыми — мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусировании пучка света из точки О в точку О’. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящимся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О’. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О’. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О». Таким образом можно пройти, если необходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!

Имеются еще более сложные формулы, которые могут нам помочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхностями!

Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей

поверхности и т. д. Часто в системах бывает несколько сортов стекла с разными показателями n 1 , n 2 , … ; поэтому для конкретного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n 1 , n 2 . Нетрудно показать, что обобщенное уравнение (27.3) имеет вид

Особенно прост случай, когда поверхности близки друг к другу и ошибками из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную, на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О’? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n 2) излишек времени на пути ОРО’ будет равен (n 1 h 2 /2s) + (n 1 h 2 /2s’). Чтобы уравнять время на пути ОРО’ и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задерживала свет на нужное время. Поэтому толщина линзы T должна удовлетворять соотношению

Можно еще выразить Т через радиусы обеих поверхностей R 1 и R 2 . Учитывая условие 3 (приведенное на стр. 27), мы находим для случая R 1 < R 2 (выпуклая линза)

Отсюда получаем окончательно

Отметим, что, как и раньше, когда одна точка находится на бесконечности, другая будет расположена на расстоянии, которое мы называем фокусным расстоянием f. Величина f определяется равенством

где n = n 2 /n 1 .

В противоположном случае, когда s стремится к бесконечности, s’ оказывается на фокусном расстоянии f’. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокуси-руются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)

Забудем на время формулу для фокусного. расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния

Давайте посмотрим теперь, как работает эта формула и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s’ бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии f и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s’ одинаковы, то каждое из них равно 2f.

Фокусное расстояние линзы зависит от степени кривизны её поверхности. Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с менее выпуклыми поверхностями, и поэтому обладает меньшим фокусным расстоянием.

Для определения фокусного расстояния собирающей линзы необходимо направить на неё солнечные лучи и, получив на экране за линзой резкое изображение Солнца, измерить расстояние от линзы до этого изображения. Поскольку лучи ввиду чрезвычайной удаленности Солнца будут падать на линзу практически параллельным пучком, то это изображение будет располагаться почти в фокусе линзы.

Физическая величина, обратная фокусному расстоянию линзы, называется оптической силой линзы (D):

D=1

Чем меньше фокусное расстояние линзы, тем больше её оптическая сила, т.е. тем сильнее она преломляет лучи. Ед. изм. (м -1) . Иначе эта единица называется диоптрией (дптр).

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

У собирающих и рассеивающих линз оптические силы отличаются знаком.

Собирающие линзы обладают действительным фокусом, поэтому их фокусное расстояние и оптическая сила считаются положительными (F>0, D>0).

Рассеивающие линзы обладают мнимым фокусом, поэтому их фокусное расстояние и оптическая сила считаются отрицательными (F<0, D<0).

Многие оптические приборы состоят из нескольких линз. Оптическая сила системы нескольких близкорасположенных линз равна сумме оптических сил всех линз этой системы. Если имеются две линзы с оптическими силами D 1 и D 2 , тоих общая оптическая сила будет равна: D= D 1 + D 2

Складываются лишь оптические силы, фокусное расстояние нескольких линз не совпадает с суммой фокусных расстояний отдельных линз.

При помощи линз можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Для построения изображения в линзах достаточно построения хода двух лучей: один проходит через оптический центр линзы без преломления, второй - луч, параллельный главной оптической оси.

1. Предмет находится между линзой и фокусом:

Изображение – увеличенное, мнимое, прямое. Такие изображения получают при пользовании лупой

2. Предмет находиться между фокусом и двойным фокусом

Изображение - действительное, увеличенное, перевернутое. Такие изображения получают в проекционных аппаратах.

3. Предмет за двойным фокусом

Линза дает уменьшенное, перевернутое, действительное изображение. Такое изображение используется в фотоаппарате.

Рассеивающая линза при любом расположении предмета дает уменьшенное, мнимое, прямое изображение. Она образует расходящийся пучок света


Глаз человека имеет почти шарообразную форму.

Его окружает плотная оболочка, которая называется склерой. Передняя часть склеры прозрачна и называется роговой оболочкой. За роговой оболочкой находится радужная оболочка, которая может быть окрашена у разных людей по-разному. Между роговой и радужной оболочками находится водянистая жидкость.

В радужной оболочке есть отверстие – зрачок, диаметр которого может изменяться в зависимости от освещения. За зрачком расположено прозрачное тело – хрусталик, который похож на двояко-выпуклую линзу. Хрусталик прикреплен мышцами к склере.

За хрусталиком расположено стекловидное тело. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры – глазное дно, покрыто сетчаткой.

Сетчатка состоит из тончайший волокон, которые устилают глазное дно. Они представляют собой разветвленные окончания зрительного нерва.

Свет, падающий на глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле, благодаря чему на сетчатке образуется действительное, уменьшенное, перевернутое изображение рассматриваемого предмета.

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное восприятие окружающего мира. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

Кривизна хрусталика может изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика не велика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна увеличивается.

Расстояние наилучшего видения для нормального глаза равно 25 см. Зрение двумя глазами увеличивает поле зрения, а также позволяет различить, какой предмет находиться ближе, а какой – дальше от нас. Дело в том, что на сетчатках левого и правого глаза получаются отличные друг от друга изображения. Чем ближе предмет, тем заметнее это отличие, оно и создает впечатление разницы в расстояниях. Благодаря зрению двумя глазами мы видим предмет объемным.

У человека с хорошим, нормальным зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Иначе обстоит дело у людей, страдающих близорукостью и дальнозоркостью.

Близорукость – это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удаленных предметов поэтому оказываются на сетчатке нечеткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Дальнозоркость – это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удаленных предметов на сетчатке при этом снова оказываются нечеткими, расплывчатыми. Поскольку дальнозоркий глаз не способен сфокусировать на сетчатке даже параллельные лучи, то еще хуже он собирает расходящиеся лучи, идущие от близкорасположенных предметов. Поэтому дальнозоркие люди плохо видят т вдали, и вблизи.

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .

Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :

Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).

Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.

Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.

Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.

Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .

Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.

Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).

Приборы и принадлежности : оптическая скамья, осветитель с матовым или молочным стеклом, ползушка с линзой, экран, собирающая и рассеивающая линзы, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния собирающей линзы.

Краткая теория

Ввиду малости световых волн (диапазон видимого спектра 400-700 нм), оказывается возможным выделить из широкого потока света сравнительно узкую ее часть без существенного нарушения прямолинейности распространения, вследствие дифракции. Такой прямолинейно распространяющийся узкий пучок света называется световым лучом. Световыми лучами можно управлять с помощью линз, зеркал, призм и т.д.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Линия, проходящая через центры этих поверхностей, называется главной оптической осью . В дальнейшем мы будем иметь в виду лучи, проходящие вблизи главной оптической оси (параксиальные лучи). Все лучи, параллельные главной оптической оси, пересекаются в одной и той же точке оси F - главном фокусе . Точка линзы (точка O на рис. 1), проходя через которую лучи не изменяют своего направления, называется оптическим центром линзы . Расстояние между главным фокусом и оптическим центром называется главным фокусным расстоянием .

В формулах, связывающих геометрические параметры оптической системы, принято правило знаков, согласно которому линейные размер считается отрицательным, если отрезок, его выражающий, располагается по ту сторону линзы, откуда распространяется свет и положительным, если отрезок лежит в стороне, куда распространяется свет. В первом случае значение величины входит в формулу со знаком минус (например: s = -|s| на рис. 1), во втором - со знаком плюс (s 1 = |s 1 | ). Таким образом, все отрезки в оптической системе являются алгебраическими величинами.

На рис. 1 показаны основные точки оптической системы и даны основные определения: AA 1 - главная оптическая ось; F и F 1 - передний и задний фокусы оптической системы; f и f 1 - переднее и заднее фокусные расстояния; s и s 1 - расстояния от линзы до предмета и до изображения; y и y 1 - поперечные размеры предмета и изображения.

Величину Φ=1/f 1 называют оптической силой линзы , которую измеряют в диоптриях (дптр): 1 дтпр = 1 м -1 . Величину β = y 1 /y называют линейным или поперечным увеличением линзы . Можно показать, что β = s 1 /s .

Фокусное расстояние можно вычислить по формуле:

где f 1 - заднее фокусное расстояние, n - показатель преломления вещества линзы; R 1 и R 2 - радиусы сферических поверхностей линзы.

Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . В точках этой плоскости (побочных фокусах), пересекаются пучки параллельных лучей, идущих под некоторым углом к главной оптической оси.

Определение знака фокусного расстояния подчиняется правилу знаков. При построение изображений, получаемых с помощью собирающих линз, пользуются фокусами от линзы со стороны, противоположной предмету. Поэтому фокусное расстояние собирающей линзы имеет положительное значение. При построении мнимых изображений, получаемых с помощью рассеивающих линз, используется фокус, лежащий от линзы по туже сторону, что и предмет. Поэтому фокусное расстояние рассеивающей линзы имеет отрицательное значение.

Описание аппаратуры и метода измерений

Горизонтальная оптическая скамья составлена из двух параллельных металлических стержней, свободно входящих своими концами в трубки, благодаря чему скамья может быть раздвинута на необходимую длину. Так как стержни и трубки имеют различную толщину, то прибор снабжен ползунками двойного рода: одни предназначены для стержней, другие для трубок.

На одном из концов скамьи установлен экран с круглым осветителем, на котором изображена стрелка, служащая предметом. Отверстие со стрелкой освещается фонарем, снабженным матовым стеклом.

Изображение A 1 B 1 (A 2 B 2) предмета AB , полученное с помощью линзы, рассматривается на экране, помещенном на противоположном конце скамьи. Линзы устанавливаются на такой высоте, при которой перекресток оказывается лежащим на уровне главной оптической оси линзы. Плоскость экрана должна быть перпендикулярна этой оси. Расстояние между приборами измеряется при помощи линейки с миллиметровыми делениями, прикрепленной к скамье.

Главное фокусное расстояние линзы можно определить непосредственно, измеряя расстояние от линзы до предмета и до изображения, воспользовавшись затем уравнением (1).

Однако величины s и s 1 измерить точно нельзя, в силу того, что в общем случае оптический центр линзы не совпадает с центром симметрии и найти его положение трудно.


Рис. 2

Поэтому мы будем пользоваться более совершенным методом, называемым методом Бесселя. Сущность этого метода заключается в следующем. Если расстояние L от предмета до экрана больше 4f , то всегда можно найти два таких положения линзы (рис. 2), при котором на экране получается отчетливые изображения предмета: в одном случае - рис. 2a) - увеличенное, в другом - рис. 2b) - уменьшенное.

В первом положении линзы можно выразить фокусное расстояние, пользуясь формулой (1), соблюдая при этом правило знаков (обозначения указаны на рис.2):

(2)

Аналогично для второго положения:

(3)

Каждая из сумм в знаменателе правой части равенства (2) и (3) равна расстоянию L между предметом и экраном, поэтому:

В таком случае должны быть равны и числители правой части равенств (2) и (3)

(5)

Однако совместное существование равенств (4) и (5) возможно лишь при условии, если s=t , s 1 =t 1 или s=t 1 , t=s 1 . Первое невозможно по условию опыта. Следовательно, остается в силе лишь второе условие.

Обозначим расстояние между оптическими центрами линзы в I и II положениях через l . Тогда из рис. 2 видно, что

Расстояние

Воспользовавшись формулой (2), выразим фокусное расстояние линзы:

Задача, таким образом, сводится к измерению перемещения любой точки линзы или даже подставки, на которой линза закреплена.

Порядок выполнения работы

  • Установить предмет и экран на расстоянии L (по указанию преподавателя), поместить между ними линзу и, передвигая её, добиться получения на экране вполне отчетливого изображения (например, увеличенного). Отметить по шкале положение линзы или какой-нибудь точки ползунка относительно экрана (или предмета)
  • Передвигая линзу, добиться второго отчетливого изображения предмета (уменьшенного) и вновь отметить положение линзы на шкале.
  • Измерить расстояние l между отметками, соответствующими двум положениям линзы.
  • Установки и измерения повторить 5 раз.
  • Изменить расстояние L между экраном и предметом.
  • Все результаты измерения занести в таблицу 1.

N опыта l , см Δl , см L , см ΔL , см
Среднее
Таблица 1

Определение главного фокусного расстояния рассеивающей линзы

Приборы и принадлежности : оптическая скамья, осветитель с матовым стеклом, ползушка с рассеивающей линзой, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния рассеивающей линзы.

Описание метода


Рис. 3

Если на пути лучей, выходящих из точки М и сходящихся после преломления в линзе BB в точке D (рис. 3), поставить рассевающую линзу СС так, чтобы её расстояние от точки D было меньше её фокусного расстояния, то изображение точки М удалиться от линзы ВВ , переместившись в точку Е .

Основываясь на принципе обратимости световых лучей в системах линз, мы можем рассматривать лучи, изображенные на рис. 3, как выходящие из точки Е и собирающиеся в точке М . Тогда точка D будет мнимым изображением точки Е после преломления лучей в рассевающей линзе СС .

Обозначая расстояния точек Е и D от линзы до СС соответственно через s и s" можно, пользуясь формулой (1), вычислить фокусное расстояние рассеивающей линзы, учитывая при этом, что, согласно правилу знаков, числовые значения s и s" войдут в формулу (1) со знаком минус.

Порядок выполнения работы

  • Поместить на оптическую скамью линзу и экран. Передвигая экран, добиться отчетливого изображения предмета.
  • Установить между собирающей линзой и экраном рассеивающую линзу и, смещая экран в сторону свободного конца скамьи, убедиться в возможности получения при данном расположении приборов отчетливого действительного изображения с рассеивающей линзой.
  • После этого снять рассеивающую линзу и, вновь передвигая экран, получить резкое изображение с одной собирающей линзой.
  • Изменить расстояние МD , соответствующее первому положению экрана. Сдвинуть экран и установить вновь. Произвести повторное измерение. Установку экрана и измерения повторить 5 раз.
  • Поставить на скамью рассеивающую линзу и, сдвигая экран, вновь получите резкое изображение предмета.
  • Измерить расстояния от предмета до рассеивающей линзы и нового положения экрана. Установку и измерения повторить 5 раз.

Обработка результатов измерений

N опыта L 0 , см ΔL 0 , см L 1 , см ΔL 1 , см L 2 , см ΔL 2 , см
Среднее
Таблица 2

Контрольные вопросы

  • Что называется главным фокусным расстоянием линзы?
  • В чем состоит правило знаков?
  • Напишите формулу тонкой линзы.
  • Объясните способ Бесселя. В чем его преимущество?
  • В чем заключается принцип обратимости световых лучей?

Литература

  • Савельев И.В. Курс общей физики. - М.: Наука, 1998, т. 4, §3.6, §3.7, §3.8.
  • Иродов И.Е. Волновые процессы. Основные законы. - М.: Лаборатория Базовых Знаний, 1999, §3.3