Что приснилось кекуле. Суть открытия Кекуле

В этой статье можно узнать все вопросы и все ответы в игре "Кто хочет стать миллионером?" за 22 июля 2017 года.

Вопросы первой паре игроков

Дарья Повереннова и Алена Свиридова (200 000 - 200 000 рублей)

1. Как называют правду, если она не очень-то приятна?

2. Кто промахнулся в сказке о Маугли?

3. Кого подковали тульские мастера в сказе Лескова?

4. Как называют короткое платье без рукавов и воротника для торжественных случаев?

5. Кого слушал кот Васька в басне Крылова?

6. Какое лакомство получается в результате взрыва?

7. Какое неофициальное название носит Малый театр в Москве?

8. В тени каких деревьев, до сих пор растущих в Коломенском, по преданию, обучался будущий царь Пётр Первый?

9. Что можно найти на карте звездного неба?

10. С кем сотрудничала модельер Эльза Скиапарелли, создавая жакет с карманами в виде выдвижных ящиков?

11. Как в России позапрошлого века называлась стоянка извозчиков в городе?

12. Избыток какой стихии в организме Гиппократ считал причиной меланхолии?

13. Что приснилось химику Кекуле и помогло открыть формулу бензола?

Вопросы второй паре игроков

Ирина Мазуркевич и Александр Пашутин (100 000 - 100 000 рублей)

1. Кто или что в стихотворении Лермонтова белеет "в тумане моря голубом"?

2. Что делают воины на поле брани?

3. Как называют книгу, которую часто перечитывают?

4. Каким словом подбадривают музыканта, чтобы играл задорнее?

5. Как продолжить песенку из фильма "Соломенная шляпка": "Женюсь, женюсь, какие могут быть...?

6. В виде каких часов исполнена иконка, появляющаяся на экране монитора в режиме ожидания?

7. Что означают слова «Он уважать себя заставил» из Евгения Онегина?

8. Как зовут главного героя фильма «Весна на Заречной улице»?

9. Что кладут на рельс для блокировки колес поезда?

10. Женой какого поэта была дочь Дмитрия Ивановича Менделеева?

11. Какой фразеологизм не произошел от обычая клеймить преступников на Руси? клеймить одним клеймом

Ответы на вопросы первой пары игроков

  1. горькая
  2. Акела
  3. блоху
  4. коктейльное
  5. повара
  6. попкорн
  7. "Дом Островского"
  8. волосы
  9. С. Дали
  10. биржа
  11. земля
  12. кусающая за хвост змея

Ответы на вопросы второй пары игроков

  1. парус
  2. рубятся
  3. настольная
  4. игрушки
  5. песочные
  6. Александр
  7. башмак
  8. А. Блока
  9. клеймить одним клеймом

Вопросы третьей паре игроков

Александр Гордон и Юлия Барановская (100 000 - 100 000 рублей)

1. Что можно настроить у себя на телефоне?

2. Что говорят о месте, которое расположено где-то очень далеко?

3. Что обещала налить любимому героиня песни в исполнении Марины Хлебниковой?

4. Какого слова не было в ставшей лозунгом фразе Ленина про партию большевиков?

5. Как называется архитектурное украшение в виде распустившегося цветка с одинаковыми лепестками?

7. Какая команда недавно впервые в истории сенсационно стала чемпионом Англии по футболу?

8. Каким старославянским словом называли жир?

9. Какая муза, как считали греки, покровительствует танцам?

10. Кого не играл в кино Эльдар Рязанов?

11. Что дало название городу Изюму?

12. Что умеет делать ящерица шлемоносный василиск, обитающая в Южной Америке?

Ответы на вопросы третьей пары игроков

  1. автоответчик
  2. у черта на рогах
  3. чашку кофею
  4. слава
  5. розетка
  6. Сергей Михалков
  7. "Лестер Сити"
  8. Терпсихора
  9. поэта
  10. бегать по воде

Дмитрий Менделеев увидел свою таблицу во сне, и его пример - не единственный. Многие ученые признавались в том, что своими открытиями обязаны своим удивительным снам. Из их снов в нашу жизнь пришла не только таблица Менделеева, но и атомная бомба.

«Нет таких таинственных явлений, которые нельзя было бы понять» - утверждал Рене Декарт (1596-1650), великий французский ученый, философ, математик, физик и физиолог. Однако как минимум одно необъяснимое явление было хорошо известно ему на личном примере. Автор множества открытий, сделанных за свою жизнь в различных областях, Декарт не скрывал, что толчком для его разносторонних изысканий послужило несколько вещих снов, увиденных им в возрасте двадцати трех лет.

Дата одного из таких снов известна точно: 10 ноября 1619 года. Именно в ту ночь Рене Декарту открылось основное направление всех его будущих работ. В том сновидении он взял в руки книгу, написанную на латыни, на первой же странице которой был выведен сокровенный вопрос: «Каким путем мне идти?». В ответ же, по словам Декарта, «Дух Истины раскрыл мне во сне взаимосвязь всех наук» .

Каким образом это произошло, теперь остается только гадать, достоверно известно лишь одно: исследования, толчком к которым послужили его сны, принесли Декарту славу, сделав его крупнейшим ученым своего времени. В течение трех столетий подряд его работы оказывали огромное влияние на науку, а ряд его работ по физике и математике остаются актуальными и до сих пор.

Удивительно, но сны известных людей, подтолкнувших их к совершению открытий, не такая уж редкость. Примером тому может служить сновидение Нильса Бора, принесшее ему Нобелевскую премию.

Нильс Бор: в гостях у атомов

Великий датский ученый, основоположник атомной физики, Нильс Бор (1885-1962) еще на студенческой скамье умудрился сделать открытие, изменившее научную картину мира.

Однажды ему приснилось, что он находится на Солнце - сияющем сгустке огнедышащего газа - а планеты со свистом проносятся мимо него. Они вращались вокруг Солнца и были связаны с ним тонкими нитями. Неожиданно газ затвердел, «солнце» и «планеты» уменьшились, а Бор, по его собственному признанию, проснулся, как от толчка: он понял, что открыл модель атома, которую так давно искал. «Солнце» из его сна было ничем иным, как неподвижным ядром, вокруг которого вращались «планеты»-электроны!

Стоит ли говорить, что планетарная модель атома, увиденная Нильсом Бором во сне, стала основой всех последующих работ ученого? Она положила начало атомной физике, принеся Нильсу Бору Нобелевскую премию и мировое признание. Сам же ученый всю свою жизнь считал своим долгом бороться против применения атома в военных целях: джинн, выпущенный на свободу его сном, оказался не только могущественным, но и опасным…

Впрочем, эта история - лишь одна в длинном ряду многих. Так, рассказ о не менее удивительном ночном озарении, продвинувшем мировую науку вперед принадлежит еще одному Нобелевскому лауреату, австрийскому физиологу Отто Леви (1873-1961).

Химия и жизнь Отто Леви

Нервные импульсы в организме передаются электрической волной - так ошибочно полагали медики вплоть до открытия, сделанного Леви. Еще будучи молодым ученым, он впервые не согласился с маститыми коллегами, смело предположив, что к передаче нервного импульса причастна химия. Но кто будет слушать вчерашнего студента, опровергающего научных светил? Тем более что у теории Леви, при всей ее логичности, не было практически никаких доказательств.

Лишь семнадцать лет спустя Леви, наконец, смог осуществить эксперимент, со всей очевидностью доказывавший его правоту. Идея же эксперимента пришла к нему неожиданно - во сне. С педантичностью истинного ученого Леви подробно рассказал об озарении, посещавшем его на протяжении двух ночей подряд:

«...В ночь перед Пасхальным Воскресеньем 1920 года я проснулся и сделал несколько заметок на обрывке бумаги. Затем я снова уснул. Утром у меня возникло ощущение, что этой ночью я записал что-то очень важное, но я не смог расшифровать свои каракули. Следующей ночью, в три часа, идея снова вернулась ко мне. Это был замысел эксперимента, который помог бы определить, правомочна ли моя гипотеза химической трансмиссии... Я тут же поднялся, пошел в лабораторию и на лягушачьем сердце поставил эксперимент, который видел во сне... Его результаты стали основой теории химической трансмиссии нервного импульса».

Исследования, немалый вклад в который внесли сны, принесли Отто Леви Нобелевскую премию в 1936 году за заслуги в области медицины и психологии.

Еще один знаменитый химик - Фридрих Август Кекуле - не стеснялся во всеуслышание признавать, что именно благодаря сну ему удалось открыть молекулярную структуру бензола, над которой до этого он безуспешно бился много лет.

Змеиное кольцо Кекуле

По собственному признанию Кекуле, много лет он пытался найти молекулярную структуру бензола, однако все его знания и опыт оказались бессильны. Проблема так мучила ученого, что порой он не переставал думать о ней ни ночью, ни днем. Нередко ему снилось, что он уже сделал открытие, однако все эти сны неизменно оказывались лишь обычным отражением его дневных мыслей и забот.

Так было вплоть до холодной ночи 1865 года, когда Кекуле задремал дома у камина и увидел удивительный сон, о котором впоследствии рассказывал так: «Перед моими глазами прыгали атомы, они сливались в более крупные структуры, похожие на змей. Как завороженный, я следил за их танцем, как вдруг одна из «змей» схватила себя за хвост и дразняще затанцевала перед моими глазами. Будто пронзенный молнией, я проснулся: структура бензола представляет из себя замкнутое кольцо!».

Это открытие было переворотом для химии того времени.

Сон настолько поразил Кекуле, что он рассказал его своим коллегам-химикам на одном из научных съездов и даже призвал их внимательнее относиться к своим сновидениям. Безусловно, под этими словами Кекуле подписалось бы немало ученых, и в первую очередь его коллега, русский химик Дмитрий Менделеев, чье открытие, сделанное, во сне, широко известно всем.

Действительно, каждый слышал о том, что свою периодическую таблицу химических элементов Дмитрий Иванович Менделеев «подсмотрел» во сне. Однако как именно это произошло? Об этом в своих мемуарах подробно рассказал один из его друзей.

Вся правда о Дмитрии Менделееве

Оказывается, сон Менделеева стал широко известен с легкой руки А.А.Иностранцева - современника и знакомого ученого, который как-то раз зашел к нему в кабинет и застал его в самом мрачном состоянии. Как вспоминал позднее Иностранцев, Менделеев пожаловался ему на то, что «все в голове сложилось, но выразить таблицей не могу». А позже пояснил, что он трое суток подряд работал без сна, но все попытки сложить мысли в таблицу оказались неудачными.

В конце концов, ученый, крайне утомленный, все-таки лег в кровать. Именно этот сон впоследствии и вошел в историю. По словам Менделеева, все происходило так: «вижу во сне таблицу, где элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги, - только в одном месте впоследствии оказалась нужной поправка».

Но самое интригующее заключается в том, что в то время, когда Менделееву приснилась периодическая система, атомные массы многих элементов были установлены неверно, а многие элементы вообще были не исследованы. Другими словами, отталкиваясь только лишь от известных ему научных данных, Менделеев просто-напросто не смог бы сделать свое гениальное открытие! А это значит, что во сне ему пришло не просто озарение. Открытие периодической системы, для которого у ученых того времени попросту не хватало знаний, можно смело сравнить с предвиденьем будущего.

Все эти многочисленные открытия, сделанные учеными во время сна, заставляют задуматься: то ли великим людям сны-откровения снятся чаще, чем простым смертным, то ли у них просто есть возможность их реализовать. А может быть, великие умы просто мало думают о том, что скажут о них другие, и потому не стесняются всерьез прислушиваться к подсказкам своих снов? Ответом тому - призыв Фридриха Кекуле, которым он завершил свое выступление на одном из научных съездов: «Давайте изучать свои сны, джентльмены, и тогда мы, возможно, придем к истине!» .

Понятие ароматичности.

Название «ароматические соединения» возникло случайно, в связи с тем, что первые соединения этого ряда, выделенные из природных смол и бальзамов, обладали приятным ароматным запахом.

Так, например, еще в ХУ1 веке из бензойной смолы были выделены бензойная кислота и бензиловый спирт; из масла горького миндаля – бензойный альдегид; из толуанского бальзама – толуол; из сосновой смолы – цимол и т.д.

В дальнейшем было установлено, что такое же строение и химические свойства имеют и многие другие вещества, не обладающие приятным ароматным запахом. Поэтому название «ароматические вещества» потеряло свое первоначальное значение.

Немецкий химик Кекуле первым обратил внимание, что многие ароматические соединения в обычных химических превращениях сохраняют характерную циклическую группировку из шести атомов углерода и поэтому бензол, как простейший представитель с шестичленной группировкой был признан родоначальником ароматических соединений.

Бензол был открыт в 1825 году Фарадеем, который выделил его из конденсированных остатков светильного газа, получаемого из каменного угля. Фарадей определил и соотношение углерода и водорода в этом соединении, равное 1:1.

В 1834 году Э.Митчерли при нагревании солей бензойной кислоты (вещества, выделяемого из природных ароматических смол) получил это же соединение и дал ему название бензин. Однако позже Ю.Либих предложил назвать это вещество бензолом.

В 1845 году Гофман выделил бензол при перегонке каменноугольной смолы.

Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми «ароматическими свойствами»:

    бензол, несмотря на свою глубокую «ненасыщенность» (С 6 Н 6), легко вступал в своеобразные реакции замещения водородных атомов и трудно вступал в реакции присоединения, характерные для алкенов;

    другая особенность, отличающая ароматические соединения от алкенов – это их высокая устойчивость, легкость образования в самых различных реакциях и сравнительная трудность протекания реакций окисления;

    наконец, весьма характерными являются свойства некоторых производных ароматических углеводородов:

Ароматические амины менее основны, чем алифатические;

Ароматические гидроксильные производные – фенолы, обладают значительно более кислотным характером, чем спирты;

Ароматические галогенпроизводные значительно труднее вступают в реакции замещения, чем алифатические.

Совокупность перечисленных свойств и являлась тем «химическим критерием» с помощью которого определялась принадлежность того или иного вещества к ароматическим соединениям, его «ароматический характер».

2. Развитие представлений о строении бензола. Формула Кекуле.

Структурную формулу бензола как системы циклогексатриена впервые предложил в 1865 году немецкий химик А.Кекуле.

Согласно Кекуле, бензол – замкнутая система с тремя сопряженными двойными связями – циклогексатриен-1,3,5.

Формула Кекуле правильно отражает:

1) элементный состав, соотношение атомов углерода и водорода (1:1) в молекуле бензола;

2) равноценность всех атомов водорода в молекуле бензола (однозамещенные бензола не имеют изомеров – С 6 Н 5 СН 3 , С 6 Н 5 Сl).

Однако, эта формула не отвечает многим особенностям бензола:

1) являясь, согласно формуле Кекуле, формально ненасыщенной системой, бензол в то же время вступает преимущественно в реакции замещения, а не присоединения. Почему бензол не обесцвечивает бромную воду?

2) эта формула не может объяснить высокой устойчивости бензольного кольца;

3) если исходить из формулы Кекуле, у бензола должно быть два орто-изомера. Однако известен только один орто-изомер.

4) и, наконец, формула Кекуле не в состоянии объяснить равенства расстояний между углеродными атомами в реальной молекуле бензола.

Чтобы выйти из этого затруднения, Кекуле был вынужден допустить возможность постоянного изменения положения двойных связей в молекуле бензола и выдвинул теорию «осцилляции», согласно которой двойные связи не фиксированы на одном месте:

В связи с этим понятие «ароматические соединения», «ароматические свойства» приобрели другой смысл.

К ароматическим соединениям стали относит соединений, содержащие шестичленную циклическую группировку с тремя двойными связями (бензольное кольцо) и обладающие особыми физическими и химическими свойствами.

Противоречия между формальной «ненасыщенностью» и своеобразными физическими и химическими свойствами, объясняет только квантовая органическая химия.

Многим кажется, что сон отнимает время от полезных видов деятельности. Чем больше мы спим, тем меньше мы сделаем. Но так ли это? История показывает, что иногда минуты сна оказываются ценнее, чем годы бодрствований. Многие известные люди именно во сне увидели идеи, которые не пришли им в голову во время длительных размышлений наяву. В этом посте — подборка случаев, когда те или иные открытия и изобретения были сделаны во сне.

Великому русскому химику Менделееву, по его словам, во сне приснилась периодическая таблица химических элементов. Долго размышляя над тем, как расположить элементы, Менделеев длительное время провёл без сна, а, когда, наконец, заснул, увидел во сне ту самую таблицу. Проснувшись, Менделеев тут же записал её на клочке бумаги. Всё встало на свои места. По его словам, впоследствии в таблицу, увиденную во сне, пришлось внести лишь одну небольшую правку.

Ещё один химик Кекуле при помощи сна открыл формулу бензола. Хотя состав бензола был известен, химики никак не могли понять, как же атомы в молекуле бензола соединяются между собой. Размышляя над проблемой, Кекуле заснул и во сне увидел, как цепи атомов закружились перед ним, и одна из них замкнулась в кольцо. Кекуле проснулся и тут же записал гипотезу о циклическом строении молекулы бензола, которая впоследствии подтвердилась.

Швейная машинка кажется привычным изобретением, но придумать её было не так просто. Когда американский механик Элиас Хоу в 1844 году разрабатывал свою первую швейную машинку, ему очень мешало игольное ушко для нитки. Оно не позволяло механизму легко протаскивать иглу через ткань. С этой проблемой сталкивались и другие изобретатели, находя иногда странные решения. Так, Джон Гринаф в 1842 году запатентовал иглу, заостренную с обоих концов и с ушком для нитки в середине иглы. Специальные щипчики хватали иглу то с одной стороны ткани, то с другой и тащили ее через ткань, имитируя движения рук швеи. Но машина работала гораздо медленнее человека. Хоу приснился ночной кошмар: его захватили в плен людоеды, угрожая убить, если он немедленно не создаст швейную машинку! Он заметил, что дикари потрясают копьями с отверстиями в наконечниках. Проснувшись, механик набросал эскиз системы. С тех пор все машинки пользуются такими иглами.

В 1782-м году английский слесарь Уильям Уотс предложил новый метод изготовления дроби, который увидел во сне. До этого дробь обычно изготавливали из свинцовой проволоки, разрубая её на кусоки и раскатывая. Однажды Уотсу приснился сон, в котором он увидел дождь, причём капли, летевшие с большой высоты, были совершенно круглыми. Уотс понял, что можно получать идеально круглую дробь, выливая расплавленный свинец с большой высоты. Вскоре дробь стали изготавливать в специальных дроболитейных башнях.

Очень полезное изобретение, которое позволило людям перестать пачкаться чернилами, сделал в 1938 г. Ласло Биро. До этого люди при письме пользовались перьевой ручкой, которую приходилось постоянно омакать в чернила. Попытки как-то усовершенствовать её оканчивались неудачей. И вот однажды венгерскому журналисту Ласло Биро приснился сон. Ему снилось, что с улицы в его окно заглядывают какие-то люди и мешают ему работать. Во сне журналист схватил ружьё и выстрелил в хулиганов. Но ружьё оказалось заряжено чернилами, да к тому же ствол забивал какой-то шарик. Проснувшийся Биро зарисовал увиденную конструкцию, что-то ему напомнившую, а позже с помощью своего брата-химика Георга занялся разработкой пишущего устройства, основанного на принципе цилиндра с чернилами и шариком. Братья перепробовали десятки вариантов, пока в конце концов не получили предмет, который каждый из нас ежедневно держит в руке.

До 1953 года учёные затруднялись в выяснении формы и структуры молекулы ДНК, пока профессор Джеймс Уотсон из Университета Индианы не увидел сон, в котором перед ним явственно предстала двойная спираль. В истории университета засвидетельствовано, что доктор увидел во сне пару переплетающихся змей, причём их головы были на разных концах спирали.

Важнейшим шагом в развитии физики стала планетарная модель атома, предложенная Бором. По рассказам Бора эта идея посетила его во сне. Однажды ему приснилось, что он находится на Солнце – сияющем сгустке огнедышащего газа – а планеты со свистом проносятся мимо него. Они вращались вокруг Солнца и были связаны с ним тонкими нитями. Неожиданно газ затвердел, «солнце» и «планеты» уменьшились, а Бор, по его собственному признанию, проснулся, как от толчка: он понял, что открыл модель атома, которую так давно искал. «Солнце» из его сна было ничем иным, как неподвижным ядром, вокруг которого вращались «планеты»-электроны.

Спасительный инсулин, который помогает ежедневно сохранить жизни многим людям, больным диабетом, тоже был придуман во сне физиологом из Канады Фредериком Бантингом. Конечно, тогда уже было изучено влияние инсулина на диабетиков, но еще никому не удавалось синтезировать само лекарство. Мистер Бантинг прочел статью о связи инсулина и поджелудочной железы, и очень долго думал над этим открытием. А затем ему во сне пришла мысль провести эксперимент над собаками: перевязать животному поджелудочную железу и через восемь недель экстрагировать этот орган. И вот в 1921 году он совершил задуманное, а затем ввел подопытному экстракт поджелудочной железы, которая атрофировалась у другой собаки. И случилось невероятное: собака, которой ввели сыворотку, поправилась. Так было придумано лекарство от диабета.

Олег Антонов, советский конструктор самолетов-гигантов, долго не мог придумать подходящее оперение для хвоста своего АН-22 Антея. И так пытался начертить, и так, но вот стоящая идея ему пришла именно во сне. Такая необычная форма настолько его поразила, что он сразу же проснулся, и зарисовал увиденное. Именно таким образом был сконструирован самолет-рекордсмен.

ППБ на пути к формуле бензола. Наша задача теперь состоит в том, чтобы выяснить скрытый механизм преодоления познавательно-психологического барьера как препятствия, стоящего на пути научно-технического прогресса. Начнем с науки.

В начале второй половины XIX века в органическую химию было введено понятие валентности, или атомности. Одноатомными были признаны такие элементы, как водород, хлор; двухатомными - кислород, сера; трехатомными - азот, фосфор и, наконец, четырехатомными - углерод, кремний. По величине атомности к символу элемента приставлялось соответствующее число черточек. Соединение писалось таким образом, что валентные черточки элементов как бы насыщали друг друга.

Как видим, соединение изображалось формулой в виде открытой цепочки, и свойства агома внутри молекулы характеризовались его положением между другими атомами и различными связями с ними.

Были установлены еще два важных обстоятельства: во-первых, между двумя атомами углерода могла быть не простая связь, изображаемая одной черточкой, а двойная (как в этилене) или даже тройная (как в ацетилене); во-вторых, цепочка могла разветвляться, оставаясь в то же время открытой и давая различные изомеры. Так объяснялось строение соединений жирного (алифатического) ряда.

Но уже начиная с 40-х годов XIX века в химии и химической промышленности все большую роль стали играть ароматические соединения, которые участвуют в анилино-красочном, парфюмерном и фармацевтическом производстве. Эти соединения являются производными простейшего исходного вещества бензола СбНб. Такова его эмпирическая формула. Строение же долго не было установлено.

Дело в том, что все шесть атомов углерода, входящие в молекулу бензола, совершенно одинаковы между собою.

Точно так же все его шесть атомов водорода тоже одинаковы. Между тем ставший общепринятым способ написания формул в виде открытых цепей и оказавшийся барьером, не мог выразить эту одинаковость всех углеродных атомов бензола, равно как и одинаковость всех его водородных атомов. На самом же деле атомы, стоящие по краям цепи, всегда и неизбежно будут отличаться от атомов, заключенных внутри цепи. Поэтому все попытки изобразить формулу бензола в виде открытой цепи неизменно оказывались несостоятельными.

Мы можем с полным основанием сказать, что способ изображения формул органических соединений в виде открытых цепей был особым способом, применимым лишь к особому классу этих соединений - к их жирному ряду (особенное). Это особенное ошибочно было универсализировано, возведено в ранг всеобщего, в результате чего превращено в Г1ПБ на пути к познанию истинной структуры бензола и его производных - ароматического ряда. Возникшую задачу нельзя было решить, оставаясь в плоскости особенности (открытых цепей): химикам надлежало найти выход за рамки этой особенности и отыскать какой- то иной, еще неизвестный принцип построения структурных формул, кроме принятых открытых цепей.

Роль «подсказки» или «трамплина» при преодолении ППБ. Разбираемый нами историко- научный эпизод интересен тем, что он позволяет выяснить не только наличие ППБ и его функционирование в ходе работы научной мысли, но и внутренний механизм своеобразной подсказки, которая независимо от самого ученого навела его мысль на искомое решение, то есть помогла преодолеть существовавший, но неосознанный ППБ.

Как рассказывал впоследствии сам автор открытия А. Кекуле, он долгое время ломал голову над тем, каким образом можно было бы выразить одинаковость всех атомов углерода в бензоле и всех его водородов. Усталый, . он сел у пылающего камина и задремал. Перед его мысленным взором мелькали, как яркие змейки, цепочки из атомов углерода и водорода. Они совершали различные движения, и вот одна из них замкнулась в кольцо.

Так у А. Кекуле родилась «подсказка» искомой формулы бензола: формула должна быть кольцевой - только в этом случае все шесть атомов углерода, входящие в молекулу бензола, могут быть между собой равноценны, так же как соединенные с ними шесть атомов водорода. А. Кекуле очнулся, сел и записал привидевшуюся ему кольцевую модель молекулы бензола.

Так он рассказывал сам. Такого рода подсказку мы назовем познавательно-психологическим трамплином (или, короче, трамплином). Она наводит мысль ученого на правильный путь к истине, который до тех пор был закрыт для него неосознанным барьером, стоявшим на этом пути. Она не разрушает этого барьера, но указывает, как его можно преодолеть или обойти нашей мыслью.

Случайное и необходимое при преодолении ППБ. К рассказанному случаю добавим следующее. Еще в детстве А. Кекуле присутствовал на суде, где разбиралось дело человека, служившего лакеем у старой графини. Он убил свою хозяйку и ограбил ее. Среди ее драгоценностей был и браслет, который застегивался на руке, подобно змею, глотающему свой хвост. Поэтому некоторые биографы А. Кекуле высказали предположение, что идея кольцевой формулы бензола могла быть подсказана ему детским воспоминанием об этом браслете.

Сам А. Кекуле отличался веселым характером, был шутником и выдумщиком. Он вознамерился сочинить еще одну версию о том, как ему пришла мысль о замыкающейся в кольцо углеродной цепи. Он рассказал, что будто бы ехал в Лондоне в омнибусе на крыше и увидел, что по улице везут в цирк клетку с обезьянами, которые хватаются лапами друг за друга и машут хвостами, и он будто бы подумал, что это атомы углерода (четырехатомные), а их хвосты - это водороды. Вдруг сцепившиеся обезьяны образовали кольцо, и он догадался, что формула бензола должна быть кольцевой.

Легко можно представить еще много других версий аналогичного характера, например: плетение венка с замыканием цветочной полоски в кольцо; свертывание в колечко прутика; смыкание большого пальца руки с одним из других и т. д.

Во всех этих случаях существенно и важно только одно: чтобы наблюдался процесс замыкания в кольцо двух окончаний какого-либо достаточно прямолинейного предмета. Наблюдение такого процесса, совершенно независимо от того, что представляет собой сам предмет, концы которого замыкаются, и может послужить намеком или имитацией решения задачи.

Заметим, что необязательно ученому было видеть ка- кой-либо из процессов в данный момент, а достаточно его вспомнить и воспоминание о таком образе могло бы дослужить ему подсказкой, причем такой, на которую он мог вообще не обратить никакого внимания и совершенно забыть о-ней в ходе последующей разработки своего открытия.

Все приведенные выше версии чисто случайные, внешние по отношению к самому творческому процессу, ничем не связанные с его существом. Однако общим в них было то, что каждое из этих случайных событий по-своему имитировало один и тот же необходимый процесс: замыкание открытой цепи в кольцо.

Здесь мы видим, что отмеченная необходимость реализовалась через случайность, которая подсказала ученому путь к решению стоявшей перед ним задачи. Дру-

гими словами, случайность здесь выступила как форма проявления необходимости, как форма ее выявления и улавливания.

При этом для хода научного познания важна, собственно говоря, сама необходимость, а не то, каким случайным образом ученый пришел к открытию этой необходимости.

По-видимому, в истории многих научных открытий подсказка могла в явной форме не фиксироваться самим ученым и бесследно стереться из его памяти. Тем не менее такие подсказки имели место в истории науки в гораздо большем количестве, нежели они зафиксированы самими учеными, а тем более, нежели о них было рассказано, как в случае с А. Кекуле.

Другой аспект случайного и необходимого в научном открытии. Итак, первым условием хорошей подсказки является наличие имитации сути готовящегося открытия. Поэтому случайность в этих условиях и выступает как форма проявления необходимости и дополнение к ней.

Но мы можем подойти к оперированию теми же категориями случайности и необходимости и с другой стороны, как это сделали французский математик О. Курно и русский марксист В. Плеханов. На вопрос «что такое случайность?» они отвечали: «Случайность возникает в пункте пересечения двух независимых необходимых рядов».

Такой подход как нельзя лучше позволяет раскрыть и понять внутренний механизм возникновения подсказки в ходе научного открытия. Это можно показать на примере нахождения формулы бензола с помощью подсказки, согласно любой из приведенных выше случайных версий. Здесь действительно происходит пересечение двух совершенно независимых между собой необходимых рядов, и сама подсказка рождается точно в пункте их пересечения.

Один из этих рядов связан с напряженными поисками ответа на поставленный самой наукой вопрос о структурной формуле бензола. Эти поиски в рамках органической химии совершаются в сознании А. Кекуле как необходимый логический процесс в течение достаточно долгого времени и пока что безрезультатно Подобный мыслительный процесс не только не прерван в момент, когда происходит вклинившийся в жизнь ученого случайный процесс внешнего характера, но, напротив, продолжает-*

ся столь же настойчиво, как и раньше. Внешний же по отношению к нему процесс, в свою очередь, столь же необходим сам по себе. Например, браслет сделан только для того, чтобы его застегивать (замыкать) на руке. Или, скажем, доставка обезьян в лондонский цирк была необходима для работы этого цирка.

Когда же оба необходимых и совершенно не связанных между собою процесса случайным образом пересеклись, то в точке их пересечения столь же случайно возникла подсказка: открытую цепь надо замыкать в кольцо. Так раскрывается в данном случае еще одна сторона механизма - образование своеобразного трамплина в ходе научного открытия.

Здесь мы имеем дело со вторым условием возникновения подсказки. Требуется соблюдение условия, чтобы поисковая мысль, направленная на разгадывание не решенной еще задачи, в этот момент не прерывалась, чтобы она настойчиво работала над разгадыванием нерешенной задачи. Только в этом случае второй, то есть посторонний, внешний процесс может послужить подсказкой (образовать трамплин) для преодоления существующего ППБ.

В /самом деле, ведь несомненно А. Кекуле с детства запомнил образ браслета в виде змеи, глотающей свой хвост. Но само по себе это воспоминание ничего ему не говорило о структурных формулах органических соединений. Здесь важно только одно: чтб подобные образы пришли ему на память в тот самый момент, когда он ломал голову над формулой бензола, иначе говоря, что оба независимых процесса совпали один с другим, пересеклись между собою и этим своим пересечением дали новое направление научно-исследовательской мысли ученого. При этом, повторяем, совершенно неважно, наблюдал ли ученый какой-либо вещественный процесс или только вспоминал его или даже просто примыслил его в своем воображении.

Третьим существенно важным условием является то, чтобы сам ученый обладал в развитой форме ассоциативным мышлением. Только в этом случае он смог бы уловить, почувствовать, заметить какую-то совершенно случайную связь (ассоциацию) между мучившей его научной задачей и совершенно не относящимся к ней ничтожно малым событием бытового характера.

Только обладая ассоциативным мышлением в должной степени, ученый способен откликнуться на пришедшую ему на помощь подсказку и увидеть в ней нужный ему трамплин. В противном случае он пройдет мимо нее, так и не поняв, что он мог ею воспользоваться.

Наконец, четвертое условие - для того, чтобы соответствующая подсказка (трамплин) привела к положительному результату и реально указала правильный путь к грядущему открытию, необходимо, чтобы мысль ученого достаточно продолжительное время билась в поисках решения стоящей задачи, чтобы она перепробовала все возможные варианты ее решения и один за другим проверила и отвергла все неудачные.

Благодаря этому познавательно-пспхологическая почва для принятия единственно верного решения оказывается достаточно подготовленной для того, чтобы подхватить нужную ей подсказку, падающую на вполне подготовленную уже почву. Иначе мысль ученого может пройти мимо сделанной ей подсказки. Как это бывает в истории науки, мы видели у А. Кекуле в его долгих поисках формулы бензола. То же самое произошло и у Д. Менделеева, который почти полтора года (с осени 1867-го по весну 1869 года) пытался упорно держаться жераровских представлений об атомности элементов и с этих позиций написал всю первую часть «Основ химии».

Таковы четыре необходимых условия успешности функционирования трамплинов при преодолении ППБ, выполнение которых завершается научным открытием. Последнее выступает при этом как выход из сферы бессознательного в сферу осознанного, подобный внезапному попаданию из темноты в освещенное место, как своего рода озарение.

Анализируя действие подсказки (трамплина) в процессе преодоления неосознанного до тех пор ППБ и связывая это действие с наличием и проявлением ассоциативности мышления ученого, мы вплотную подошли к разбору собственно познавательно-психологических проблем научного творчества. Пока мы рассматривали функции барьера и его действие, мы оставались все время в сфере бессознательного, ибо до преодоления ППБ ученый даже не догадывается о его существовании. Отыскивая решения вставшей перед ним задети, ученый, словно в потемках, ощупью идет к истине и наталкивается на какое-то странное препятствие. Когда же непонятно откуда возникший трамплин вдруг выводит его на путь

к решению, то это оказывается подобно внезапно блеснувшему лучу света, указавшему выход из темноты.

Этот момент отмечает и сам ученый, сравнивая его с неожиданным прозрением, просветлением или даже с наитием (иногда словно пришедшим свыше). Словами «блеснула мысль», «сверкнула идея» и т. п. ученый фактически констатирует момент, когда из темноты бессознательного его мысль сразу вышла на свет осознанного и увидела способ для преодоления непонятной до тех пор преграды, стоящей на пути к истине. Тем самым и ППБ, впервые воспринимаемый, из тьмы бессознательного переходит в область сознательного.