Как работает биполярный транзистор. Учебное пособие: Биполярные транзисторы

Статье мы с вами разобрали такой важный параметр транзистора, как коэффициент бета (β) . Но есть в транзисторе еще один интересный параметр. Сам по себе он ничтожный, но делов может наделать ого-го! Это все равно что галька, которая попала в кроссовок легкоатлету: вроде бы маленькая, а причиняет неудобство при беге. Так чем же мешает эта самая «галька» транзистору? Давайте разберемся…

Прямое и обратное включение PN-перехода

Как мы помним, транзистор состоит из трех полупроводников. , который у нас база-эмиттер называется эмиттерным переходом , а переход, который база-коллектор — коллекторным переходом.

Так как в данном случае у нас транзистор NPN, значит ток будет течь от коллектора к эмиттеру, при условии, что мы будем открывать базу, подавая на нее напряжение более чем 0,6 Вольт (ну чтобы транзистор открылся).

Давайте гипотетически возьмем тонкий-тонкий ножик и вырежем эмиттер прямо по PN-переходу. У нас получится как-то вот так:

Стоп! У нас что, получился диод ? Да, он самый! Помните, в статье вольтамперная характеристика (ВАХ) мы рассматривали ВАХ диода:


В правой части ВАХ мы с вами видим как веточка графика очень резко взлетела вверх. В этом случае мы подавали на диод постоянное напряжение вот таким образом, то есть это было прямое включение диода.

Диод пропускал через себя электрический ток. Мы с вами даже проводили опыты с прямым и обратным включением диода. Кто не помнит, можно прочитать .

Но если поменять полярность

то диод у нас не будет пропускать ток. Нас всегда так учили, и в этом есть доля правды, но… наш мир не идеален).

Принцип работы PN-перехода? Мы его представляли как воронку. Так вот, для этого рисуночка

наша воронка будет перевернута горлышком к потоку


Направление потока воды — это направление движения электрического тока. Воронка — это и есть диод. Но вот вода, которая попала через узкое горлышко воронки? Как же ее можно назвать? А называется она обратный ток PN перехода (I обр) .

А как вы думаете, если прибавить скорость течения воды, увеличится ли количество воды, которое пройдет через узкое горлышко воронки? Однозначно! Значит, если прибавлять напряжение U обр , то и увеличится обратный ток I обр , что мы с вами и видим в левой части на графике ВАХ диода:

Но до какого предела можно увеличивать скорость потока воды? Если она будет очень большой, наша воронка не выдержит, стенки треснут и она разлетится по кусочкам, так ведь? Поэтому на каждый диод можно найти такой параметр, как U обр.макс , превышение которого для диода равнозначно летальному исходу.


Например, для диода Д226Б:


U обр.макс = 500 Вольт, а максимальное обратное импульсное U обр. имп.макс = 600 Вольт. Но имейте ввиду, что электронные схемы проектируют, как говорится «с 30% запасом». И если даже в схеме обратное напряжение на диоде будет 490 Вольт, то в схему поставят диод, который выдерживает более 600 Вольт. С критическими значениями лучше не играть). Импульсное обратное напряжение — это резкие всплески напряжения, которые могут достигать амплитудой до 600 вольт. Но здесь тоже лучше взять с небольшим запасом.

Так… а что я это все про диод да про диод… Мы же вроде как транзисторы изучаем. Но как ни крути, диод — кирпичик для построения транзистора. Значит, если приложить к коллекторному переходу обратное напряжение, то у нас через переход потечет обратный ток, как в диоде? Именно так. И называется такой параметр в транзисторе . У нас он обозначается как I КБО , у буржуев — I CBO . Расшифровывается как «ток между коллектором и базой, при открытом эмиттере» . Грубо говоря, ножка эмиттера никуда не цепляется и висит в воздухе.

Чтобы замерять обратный ток коллектора, достаточно собрать вот такие простенькие схемки:

Для NPN транзистора для PNP транзистора

У кремниевых транзисторов обратный ток коллектора меньше, чем 1 мкА, у германиевых: 1-30 мкА. Так как у меня замеряет только от 10 мкА, а германиевых транзисторов под рукой нет, то провести этот опыт я не смогу, так как разрешение прибора не позволяет.

Мы так и не ответили на вопрос, почему обратный ток коллектора имеет такое важное значение и приводится в справочниках? Все дело в том, что при работе транзистор рассеивает какую-то мощность в пространство, значит нагревается. Обратный ток коллектора очень сильно зависит от температуры и на каждые 10 градусов по Цельсию увеличивает свое значение в два раза. Не, ну а что такого? Пусть возрастает, никому же вроде не мешает.

Влияние обратного коллекторного тока

Все дело в том, что в некоторых схемах включения часть этого тока проходит через эмиттерный переход. А как мы с вами помним, через эмиттерный переход течет базовый ток. Чем больше управляющий ток (ток базы) тем больше управляемый (ток коллектора). Это мы с вами рассматривали еще в статье. Следовательно, малейшее изменение базового тока ведет к большому изменению коллекторного тока и вся схема начинает работать неправильно.

Как борются с обратным коллекторным током

Значит, самый главный враг транзистора — это температура. Как же с ней борются разработчики радиоэлектронной аппаратуры (РЭА)?

— используют транзисторы, у которых обратный коллекторный ток имеет очень малое значение. Это, конечно же, кремниевые транзисторы. Небольшая подсказка — маркировка кремниевых транзисторов начинается с букв «КТ», что означает К ремниевый Т ранзистор.

— использование схем, которые минимизируют обратный ток коллектора.

Обратный ток коллектора — важный параметр транзистора. Он приводится в даташите на каждый транзистор. В схемах, которые используются в экстремальных температурных условиях, обратный ток коллектора будет играть очень большую роль. Поэтому, если собираете схему, где не используется радиатор и вентилятор, то, конечно же, лучше взять транзисторы с минимальным обратным коллекторным током.

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично . При приложении к его полюсам разности потенциалов происходит его "смещение". Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается. Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную .

Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема , в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки , активный режим и режим насыщения .

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток. Для кремниевых транзисторов величина такого порога равна примерно 0,6 В. Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

U БЭ <0,6 В

I Б =0

Активный режим

В активном режиме эмиттерный переход смещается в прямом направлении до момента отпирания (начала протекания тока) напряжением больше 0,6 В (для кремниевых транзисторов), а коллекторный – в обратном. Если база обладает проводимостью p-типа, происходит перенос (инжекция) электронов из эмиттера в базу, которые моментально распределяются в тонком слое базы и почти все достигают границы коллектора. Насыщение базы электронами приводит к значительному уменьшению размеров коллекторного перехода, через который электроны под действием отрицательного потенциала со стороны эмиттера и базы вытесняются в область коллектора, стекая через вывод коллектора, обуславливая тем самым ток коллектора. Очень тонкий слой базы ограничивает её максимальный ток, проходящий через очень малое сечение поперечного разреза в направлении вывода базы. Но эта малая толщина базы обуславливает её быстрое насыщение электронами. Площадь переходов имеет значительные размеры, что создаёт условия для протекания значительного тока эмиттер-коллектор, в десятки и сотни раз превышающий ток базы. Таким образом, пропуская через базу незначительные токи, мы можем создавать условия для прохождения через коллектор токов гораздо большей величины. Чем больше ток базы, тем больше её насыщение, и тем больше ток коллектора. Такой режим позволяет плавно управлять (регулировать) проводимостью коллекторного перехода соответствующим изменением (регулированием) тока базы. Это свойство активного режима транзистора используется в схемах различных усилителей.

В активном режиме ток эмиттера транзистора складывается из тока базы и коллектора:

I Э = I К + I Б

Ток коллектора можно выразить соотношением:

I К = α I Э

где α – коэффициент передачи тока эмиттера

Из приведённых равенств можно получить следующее:

где β – коэффициент усиления тока базы.

Режим насыщения

Предел увеличения тока базы до момента, когда ток коллектора остаётся неизменным определяет точку максимального насыщения базы электронами. Дальнейшее увеличение тока базы не будет изменять степень её насыщения, и ни как не будет влиять на ток коллектора, может привести к перегреву материала в области контакта базы и выходу транзистора из строя. В справочных данных на транзисторы могут быть указаны величины тока насыщения и максимально допустимого тока базы, либо напряжения насыщения эмиттер-база и максимально допустимого напряжения эмиттер-база. Эти пределы определяют режим насыщения транзистора при нормальных условиях его работы.

Режим отсечки и режим насыщения эффективны при работе транзисторов в качестве электронных ключей для коммутации сигнальных и силовых цепей.

Отличие в принципе работы транзисторов с различными структурами

Выше был рассмотрен случай работы транзистора n-p-n структуры. Транзисторы p-n-p структуры работают аналогично, но есть принципиальные отличия, которые следует знать. Полупроводниковый материал с акцепторной проводимостью p-типа обладает сравнительно низкой пропускной способностью электронов, так как основан на принципе перехода электрона от одного вакантного места (дырки) к другому. Когда все вакансии замещены электронами, то их движение возможно только по мере появления вакансий со стороны направления движения. При значительной протяжённости участка такого материала он будет обладать значительным электрическим сопротивлением, что приводит к большим проблемам при его использовании в качестве наиболее массивных коллекторе и эмиттере биполярных транзисторов p-n-p типа, чем при использовании в очень тонком слое базы транзисторов n-p-n типа. Полупроводниковый материал с донорной проводимостью n-типа обладает электрическими свойствами проводящих металлов, что делает его более выгодным для использования в качестве эмиттера и коллектора, как в транзисторах n-p-n типа.

Эта отличительная особенность различных структур биполярных транзисторов приводит к большим затруднениям при производстве пар компонент с различными структурами и аналогичными друг другу электрическими характеристиками. Если обратить внимание на справочные данные характеристик пар транзисторов, можно заметить, что при достижении одинаковых характеристик двух транзисторов различных типов, например КТ315А и КТ361А, несмотря на их одинаковую мощность коллектора (150 мВт) и примерно одинаковый коэффициент усиления по току (20-90), у них отличаются максимально допустимые токи коллектора, напряжения эмиттер-база и пр.

P.S. Данное описание принципа действия транзистора было интерпретировано с позиции Русской Теории , поэтому здесь нет описания действия электрических полей на вымышленные положительные и отрицательные заряды. Русская Физика даёт возможность пользоваться более простыми, понятными механическими моделями, наиболее приближенными к действительности, чем абстракции в виде электрических и магнитных полей, положительных и электрических зарядов, которые вероломно подсовывает нам традиционная школа. По этой причине не рекомендую без предварительного анализа и осмысления пользоваться изложенной теорией при подготовке к сдаче контрольных, курсовых и иных видов работ, Ваши преподаватели могут просто не принять инакомыслие, даже конкурентоспособное и вполне состоятельное с точки зрения здравого смысла и логики. Кроме того, с моей стороны это первая попытка описания работы полупроводникового прибора с позиции Русской Физики, может уточняться и дополняться в дальнейшем.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h21э .

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод - это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Устройство и принцип действия

Первые транзисторы были изготовлены на основе германия . В настоящее время их изготавливают в основном из кремния и арсенида галлия . Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых зон: эмиттера E , базы B и коллектора C . В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам - большая площадь перехода коллектор-база увеличивает вероятность экстракции неосновных носителей заряда в коллектор и т.к. в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора), поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора . Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (I э =I б + I к). Коэффициент α, связывающий ток эмиттера и ток коллектора (I к = α I э) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 - 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Режимы работы биполярного транзистора

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база - в обратном (закрыт)
U ЭБ >0;U КБ <0 (для транзистора p-n-p типа, для транзистора n-p-n типа условие будет иметь вид U ЭБ <0;U КБ >0);

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход - прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер - мкА (у кремниевых транзисторов) до единиц миллиампер - мА (у германиевых транзисторов).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором , а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току I вых /I вх.
  • Входное сопротивление R вх =U вх /I вх

Схема включения с общей базой

Усилитель с общей базой.

  • Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
  • Коэффициент усиления по току: I вых /I вх =I к /I э =α [α<1]
  • Входное сопротивление R вх =U вх /I вх =U бэ /I э.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства:

  • Хорошие температурные и частотные свойства.
  • Высокое допустимое напряжение

Недостатки схемы с общей базой:

  • Малое усиление по току, так как α < 1
  • Малое входное сопротивление
  • Два разных источника напряжения для питания.

Схема включения с общим эмиттером

  • Коэффициент усиления по току: I вых /I вх =I к /I б =I к /(I э -I к) = α/(1-α) = β [β>>1]
  • Входное сопротивление: R вх =U вх /I вх =U бэ /I б

Достоинства:

  • Большой коэффициент усиления по току
  • Большой коэффициент усиления по напряжению
  • Наибольшее усиление мощности
  • Можно обойтись одним источником питания
  • Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

  • Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Схема с общим коллектором

  • Коэффициент усиления по току: I вых /I вх =I э /I б =I э /(I э -I к) = 1/(1-α) = β [β>>1]
  • Входное сопротивление: R вх =U вх /I вх =(U бэ +U кэ)/I б

Достоинства:

  • Большое входное сопротивление
  • Малое выходное сопротивление

Недостатки:

  • Коэффициент усиления по напряжению меньше 1.

Схему с таким включением называют «эмиттерным повторителем»

Основные параметры

  • Коэффициент передачи по току
  • Входное сопротивление
  • Выходная проводимость
  • Обратный ток коллектор-эмиттер
  • Время включения
  • Предельная частота коэффициента передачи тока базы
  • Обратный ток коллектора
  • Максимально допустимый ток
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, не зависимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току r э, r к, r б, которые представляют собой:
    • r э - сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • r к - сумму сопротивлений коллекторной области и коллекторного перехода;
    • r б - поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление - сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

H 11 = U m1 /I m1 при U m2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

H 12 = U m1 /U m2 при I m1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

H 21 = I m2 /I m1 при U m2 = 0.

Выходная проводимость - внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

H 22 = I m2 /U m2 при I m1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

U m1 = h 11 I m1 + h 12 U m2 ;
I m2 = h 21 I m1 + h 22 U m2 .

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» - для схемы ОЭ, «б» - для схемы ОБ, «к» - для схемы ОК.

Для схемы ОЭ: I m1 = I mб, I m2 = I mк, U m1 = U mб-э, U m2 = U mк-э. Например, для данной схемы:

H 21э = I mк /I mб = β.

Для схемы ОБ: I m1 = I mэ, I m2 = I mк, U m1 = U mэ-б, U m2 = U mк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

; ; ; .

С повышением частоты вредное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода C к. Сопротивление ёмкости уменьшается, снижается ток через сопротивление нагрузки и, следовательно, коэффициенты усиления α и β. Сопротивление ёмкости эмиттерного перехода C э также снижается, однако она шунтируется малым сопротивлением перехода r э и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционность процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме импульс тока коллектора начинается с запаздыванием на время задержки τ з относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τ ф. Временем включения транзистора называется τ вкл = τ з + τ ф.

Технология изготовления транзисторов

  • Эпитаксиально-планарная
  • Сплавная
    • Диффузионный
    • Диффузионносплавной

Применение транзисторов

  • Демодулятор (Детектор)
  • Инвертор (лог. элемент)
  • Микросхемы на транзисторной логике (см. транзисторно-транзисторная логика , диодно-транзисторная логика , резисторно-транзисторная логика)

См. также

Литература

Примечания

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор · Мемристор
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод · Триод · Тетрод · Пентод · Гексод · Гептод · Пентагрид · Октод · Нонод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны
Устройства отображения