Что такое звуковая волна. Школьная энциклопедия

Пение птиц, шум дождя и ветра, раскаты грома, музыка – всё, что мы слышим, мы считаем звуком.

С научной точки зрения звук – это физическое явление, которое представляет собой механические колебания, распространяющиеся в твёрдой, жидкой и газообразной среде . Они и вызывают слуховые ощущения.

Как появляется звуковая волна

Нажать на картинку

Все звуки распространяются в виде упругих волн. А волны возникают под действием упругих сил, появляющихся, когда тело деформируют. Эти силы стремятся вернуть тело в исходное состояние. Например, натянутая струна в неподвижном состоянии не звучит. Но стоит только отвести её в сторону, как под действием силы упругости она будет стремиться занять своё первоначальное положение. Вибрируя, она становится источником звука.

Источником звука может быть любое колеблющееся тело, например, закреплённая с одной стороны тонкая стальная пластинка, воздух в музыкальном духовом инструменте, голосовые связки человека, колокольчик и т.д.

Что происходит в воздухе при возникновении колебания?

Как любой газ, воздух обладает упругостью. Он сопротивляется сжатию и тут же начинает расширяться, когда давление уменьшается. Любое давление на него он равномерно передаёт в разные стороны.

Если с помощью поршня резко сжать воздух, то в этом месте сразу же увеличится давление. Оно тут же передастся соседним слоям воздуха. Они будут сжиматься, и давление в них увеличится, а в предыдущем слое уменьшится. Так по цепочке чередующиеся зоны повышенного и пониженного давления передаются дальше.

Отклоняясь в стороны поочерёдно, звучащая струна сжимает воздух сначала в одном направлении, а затем в противоположном. В том направлении, куда отклонилась струна, давление становится выше атмосферного на какую-то величину. С противоположной стороны давление на такую же величину уменьшается, так как воздух там разрежается. Сжатия и разрежения будут чередоваться и распространяться в разные стороны, вызывая колебания воздуха. Эти колебания и называются звуковой волной . А разность между атмосферным давлением и давлением в слое сжатия или разрежения воздуха называют акустическим, или звуковым давлением.

Нажать на картинку

Звуковая волна распространяется не только в воздухе, но и в жидкой, и в твёрдой среде. Например, вода прекрасно проводит звук. Мы слышим под водой удар камня. Шум винтов надводного корабля улавливает акустик подводной лодки. Если на один конец деревянной доски положить наручные механические часы, то, приложив ухо к противоположному концу доски, мы услышим их тиканье.

Будут ли различаться звуки в вакууме? Английский физик, химик и богослов Роберт Бойль, живший в XVII веке, поместил часы в стеклянный сосуд, из которого откачал воздух. Тиканья часов он не услышал. Это означало, что звуковые волны в безвоздушном пространстве не распространяются.

Характеристики звуковой волны

Форма звуковых колебаний зависит от источника звука. Наиболее простую форму имеют равномерные, или гармонические колебания. Их можно представить в виде синусоиды. Такие колебания характеризуются амплитудой, длиной волны и частотой распространения колебаний.

Амплитуда

Амплитудой в общем случае называют максимальное отклонение тела от положения равновесия.

Так как звуковая волна состоит из чередующихся областей высокого и низкого давления, то её часто рассматривают как процесс распространения колебаний давления. Поэтому говорят об амплитуде давления воздуха в волне.

От амплитуды зависит громкость звука. Чем она больше, тем громче звук.

Каждый звук человеческой речи имеет форму колебаний, свойственную только ему. Так, форма колебаний звука «а» отличается от формы колебаний звука «б».

Частота и период волны

Количество колебаний в секунду называется частотой волны .

f = 1/Т

где Т – период колебаний. Это промежуток времени, за который совершается одно полное колебание.

Чем больше период, тем меньше частота, и наоборот.

Единица измерения частоты в международной системе измерений СИ – герц (Гц). 1 Гц – это одно колебание в секунду.

1 Гц = 1 с -1 .

К примеру, частота в 10 Гц означает 10 колебаний в 1 секунду.

1 000 Гц = 1 кГц

От частоты колебаний зависит высота тона. Чем выше частота, тем выше тон звука.

Человеческое ухо способно воспринимать не все звуковые волны, а только лишь те, которые имеют частоту от 16 до 20 000 Гц. Именно эти волны и считаются звуковыми. Волны, частота которых ниже 16 Гц, называют инфразвуковыми, а свыше 20 000 Гц – ультразвуковыми.

Человек не воспринимает ни инфразвуковые, ни ультразвуковые волны. Но животные и птицы способны слышать ультразвук. Например, обыкновенная бабочка различает звуки, имеющие частоту от 8 000 до 160 000 Гц. Диапазон, воспринимаемый дельфинами, ещё шире, он колеблется от 40 до 200 тысяч Гц.

Длина волны

Длиной волны называют расстояние между двумя ближайшими точками гармонической волны, находящимися в одинаковой фазе, например, между двумя гребнями. Обозначается как ƛ .

За время, равное одному периоду, волна проходит расстояние, равное её длине.

Скорость распространения волны

v = ƛ / T

Так как T = 1/f,

то v = ƛ·f

Скорость звука

Попытки определить скорость звука с помощью экспериментов предпринимались ещё в первой половине XVII века. Английский философ Фрэнсис Бэкон в своей работе «Новый органон» предложил свой способ решения этой задачи, основанный на разности скоростей света и звука.

Известно, что скорость света значительно выше скорости звука. Поэтому во время грозы сначала мы видим вспышку молнии, а уже затем слышим раскаты грома. Зная расстояние между источником света и звука и наблюдателем, а также время между вспышкой света и звуком, можно рассчитать скорость звука.

Идеей Бэкона воспользовался французский учёный Марен Марсенн. Наблюдатель, находящийся на некотором расстоянии от человека, стрелявшего из мушкета, зафиксировал время, прошедшее от световой вспышки до звука выстрела. Затем величину расстояния разделили на время и получили скорость звука. По результатам эксперимента скорость оказалась равной 448 м/с. Это был приблизительный расчёт.

В начале XIX века группа учёных Парижской академии наук повторила этот опыт. По их расчётам скорость света имела значение 350-390 м/с. Но и эта цифра не была точной.

Теоретически скорость света пытался вычислить Ньютон. В основу своих расчётов он положил закон Бойля-Мариотта, описывавший поведение газа в изотермическом процессе (при постоянной температуре). А так бывает, когда объём газа изменяется очень медленно, успевая отдать окружающей среде тепло, возникающее в нём.

Ньютон же предполагал, что между областями сжатия и разрежения температура выравнивается быстро. Но этих условий нет в звуковой волне. Воздух плохо проводит тепло, а расстояние между слоями сжатия и разрежения велико. Тепло из слоя сжатия не успевает перейти в слой разрежения. И между ними возникает разность температур. Поэтому расчёты Ньютона оказались неверными. Они давали цифру в 280 м/с.

Французский учёный Лаплас сумел объяснить, что ошибка Ньютона заключалась в том, что звуковая волна распространяется в воздухе в адиабатических условиях, при изменяющейся температуре. Согласно расчётам Лапласа, скорость звука в воздухе при температуре 0 о С равняется 331,5 м/с. Причём, она возрастает с возрастанием температуры. И при повышении температуры до 20 о С она будет равна уже 344 м/с.

В разных средах звуковые волны распространяются с разной скоростью.

Для газов и жидкостей скорость звука вычисляется по формуле:

где с –скорость звука,

β - адиабатическая сжимаемость среды,

ρ – плотность.

Как видно из формулы, скорость зависит от плотности и сжимаемости среды. В воздушной среде она меньше, чем в жидкой. Например, в воде при температуре 20 о С она равна 1484 м/с. Причём, чем выше солёность воды, тем с большей скоростью в ней распространяется звук.

Впервые скорость звука в воде измерили в 1827 г. Этот эксперимент чем-то напоминал измерение скорости света Мареном Марсенном. С борта одной лодки в воду спустили колокол. На расстоянии более 13 км от первой лодки находилась вторая. На первой лодке ударяли в колокол и одновременно поджигали порох. На второй лодке фиксировали время вспышки, а затем время прихода звука от колокола. Разделив расстояние на время, получили скорость звуковой волны в воде.

Самую высокую скорость звук имеет в твёрдой среде. Например, в стали она достигает более 5000 м/с.

Звук распространяется посредством звуковых волн. Эти волны проходят не только сквозь газы и жидкости, но и через твердые тела. Действие любых волн заключается главным образом в переносе энергии. В случае звука перенос принимает форму мельчайших перемещений на молекулярном уровне.

В газах и жидкостях звуковая волна сдвигает молекулы в направлении своего движения, то есть в направлении длины волны. В твердых телах звуковые колебания молекул могут происходить и в направлении перпендикулярном волне.

Звуковые волны распространяются из своих источников во всех направлениях, как это показано на рисунке справа, на котором изображен металлический колокол, периодически сталкивающийся со своим языком. Эти механические столкновения заставляют колокол вибрировать. Энергия вибраций сообщается молекулам окружающего воздуха, и они оттесняются от колокола. В результате в прилегающем к колоколу слое воздуха увеличивается давление, которое затем волнообразно распространяется во все стороны от источника.

Скорость звука не зависит от громкости или тона. Все звуки от радиоприемника в комнате, будь они громкими или тихими, высокого тона или низкого, достигают слушателя одновременно.

Скорость звука зависит от вида среды, в которой он распространяется, и от ее температуры. В газах звуковые волны распространяются медленно, потому что их разреженная молекулярная структура слабо препятствует сжатию. В жидкостях скорость звука увеличивается, а в твердых телах становится еще более высокой, как это показано на диаграмме внизу в метрах в секунду (м/с).

Путь волны

Звуковые волны распространяются в воздухе аналогично показанному на диаграммах справа. Волновые фронты движутся от источника на определенном расстоянии друг от друга, определяемом частотой колебаний колокола. Частота звуковой волны определяется путем подсчета числа волновых фронтов, прошедших через данную точку в единицу времени.

Фронт звуковой волны удаляется от вибрирующего колокола.

В равномерно прогретом воздухе звук распространяется с постоянной скоростью.

Второй фронт следует за первым на расстоянии, равном длине волны.

Сила звука максимальна вблизи источника.

Графическое изображение невидимой волны

Звуковое зондирование глубин

Пучок лучей гидролокатора, состоящий из звуковых волн, легко проходит через океанскую воду. Принцип действия гидролокатора основан на том факте, что звуковые волны отражаются от океанского дна; этот прибор обычно используется для определения особенностей подводного рельефа.

Упругие твердые тела

Звук распространяется в деревянной пластине. Молекулы большинства твердых тел связаны в упругую пространственную решетку, которая плохо сжимается и вместе с тем ускоряет прохождение звуковых волн.

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?

Звук - это упругие волны в среде (часто в воздухе), которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.


Звуковая волна распространяется через дерево

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения , как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Дело в том, что человеческое ухо воспринимает не все волны, а только те, которые создают тела, колеблющиеся с частотой от 16Гц до 20000Гц. Такие волны называются звуковыми . Колебания с частотой меньше 16Гц называется инфразвуком . Колебания с частотой больше 20000Гц называются ультразвуком .



Скорость звука

Звуковые волны распространяются не мгновенно, а с некоторой конечной скоростью (аналогично скорости равномерного движения).

Именно поэтому во время грозы мы сначала видим молнию, то есть свет (скорость света гораздо больше скорости звука), а затем доносится звук.


Скорость звука зависит от среды: в твердых телах и жидкостях скорость звука значительно больше, чем в воздухе. Это табличные измеренные постоянные . С увеличением температуры среды скорость звука возрастает, с уменьшением - убывает.

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

Частота звуковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разных источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окраску, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретного голоса.

Эхо . Эхо образуется в результате отражения звука от различных преград - гор, леса, стен, больших зданий и т.п. Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным. Препятствие должно находится на расстоянии 11м от человека, чтобы можно было услышать эхо.

Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.

Некоторые животные (например, летучая мышь, дельфин) издают ультразвуковые колебания, затем воспринимают отраженную волну от препятствий. Так они определяют местоположение и расстояние до окружающих предметов.

Эхолокация . Это способ определения местоположения тел по отраженным от них ультразвуковым сигналам. Широко применяется в мореплавании. На судах устанавливают гидролокаторы - приборы для распознавания подводных объектов и определения глубины и рельефа дна. На дне судна помещают излучатель и приемник звука. Излучатель дает короткие сигналы. Анализируя время задержки и направление возвращающихся сигналов, компьютер определяет положение и размер объекта отразившего звук.

Ультразвук используется для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и др.). Прибор, используемый для этой цели называется ультразвуковым дефектоскопом . На исследуемую деталь направляется поток коротких ультразвуковых сигналов, которые отражаются от находящихся внутри нее неоднородностей и, возвращаясь, попадают в приемник. В тех местах, где дефектов нет, сигналы проходят сквозь деталь без существенного отражения и не регистрируются приемником.

Ультразвук широко используется в медицине для постановки диагноза и лечения некоторых заболеваний. В отличие от рентгеновских лучей его волны не оказывают вредного влияния на ткани. Диагностические ультразвуковые исследования (УЗИ) позволяют без хирургического вмешательства распознать патологические изменения органов и тканей. Специальное устройство направляет ультразвуковые волны с частотой от 0,5 до 15МГц на определенную часть тела, они отражаются от исследуемого органа и компьютер выводит на экран его изображение.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и земной коре могут распространятся на очень далекие расстояния. Это явление находит практическое применение при определении мест сильных взрывов или положения стреляющего оружия. Распространение инфразвука на большие расстояния в море дает возможность предсказания стихийного бедствия - цунами. Медузы, ракообразные и др. способны воспринимать инфразвуки и задолго до наступления шторма чувствуют его приближение.