Что такое ультразвуковое исследование. Как получается и проводится ультразвук

В 1794-ом году Спалланцани заметил, что если у летучей мыши заткнуть уши, она теряет ориентировку, он и предположил, что ориентация в пространстве осуществляется посредством излучаемых и воспринимаемых невидимых лучей.

В лабораторных условиях ультразвук впервые получен в 1830-ом году братьями Кюрие. После второй мировой войны Холмэс на основании принципа сонара-прибора, применявшегося в подводном флоте, сконструировал диагностичеcкие установки, получившие распространение в акушерстве, нейрологии и офтальмологии. В последующем совершенствование УЗ- аппаратов привело к тому, что данный метод в настоящее время стал самым распространенным при визуализации паренхиматозных органов. Диагностическая процедура непродолжительна, безболезненна и может многократно повторяться, что позволяет осуществлять контроль за процессом лечения.

Что определяет УЗИ?

Ультразвуковой метод предназначен для дистантного определения положения, формы, величины, структуры и движения органов и тканей организма, а также для выявления патологических очагов с помощью УЗ-излучения.

Ультразвуковые волны – это механические, продольные колебания среды , с частотой колебаний свыше 20 кГц.

В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения У- звука необходима среда – воздух, жидкость, ткань (он не распространяется в вакууме).

Как и все волны, У-звук характеризуется следующими параметрами:

  • Частота — число полных колебаний (циклов) за период времени в 1 сек. Единицами измерения являются герц, килогерц, мегагерц (Гц, кГц, МГц). Один герц-это колебание в 1 сек.
  • длина волны — это длина, которую занимает в пространстве одно колебание. Измеряется в метрах, см, мм, и тд.
  • Период — это время, необходимое для получения одного полного цикла колебаний (сек, милисек., микросек.).
  • Амплитуда (интенсивность – высота волны) – определяет энергетическое состояние.
  • Скорость распространения — это скорость, с которой У-волна перемещается в среде.

Частота, период, амплитуда и интенсивность определяется источником звука, а скорость распространения – средой.

Скорость распространения ультразвука определяется плотностью среды. Например, в воздухе скорость составляет 343 м. в сек., в легких – более 400, в воде – 1480, в мягких тканях и паренхиматозных органах от 1540 до 1620 и в костной ткани ультразвук продвигается более 2500 м. в секунду.

Усредненная скорость распространения ультразвука в тканях человека составляет 1540 м/с — на эту скорость запрограммировано большинство ультразвуковых диагностических приборов.

Основой метода является взаимодействие ультразвука с тканями человека, которое слагается из двух составляющих:

Первая — излучение коротких ультразвуковых импульсов, направленное в исследуемые ткани;

Вторая — формирование изображения на основе отраженных тканями сигналов.

Пьезоэлектрический эффект

Для получения ультразвука используются специальные преобразователи — датчики или трансдьюсеры, которые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте . Суть эффекта состоит в том, что подаче электрического напряжения на пьезоэлектрический элемент происходит изменение его формы. При отсутствии электрического тока пьезоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет изменение формы, но уже в обратном направлении. Если к пьезоэлементу приложить переменный ток, то элемент начнет с высокой частотой колебаться, генерируя ультразвуковые волны.

При прохождении через любую среду будет наблюдаться ослабление ультразвукового сигнала, которое называется импедансом (за счет поглощения энергии средой). Величина его зависит от плотности среды и скорости распространения ультразвука в ней. Достигнув границы двух сред с различным импедансом происходят следующие изменения: часть УЗ-волн отражается и следует обратно в сторону датчика, а часть продолжает распространяться дальше, чем выше импеданс, тем больше отражается УЗ-волн. Коэффициент отражения также зависит от угла падения волн – прямой угол, дает наибольшее отражение.

(на границе воздух — мягкие ткани происходит практически полное отражение ультразвука, в связи с чем, для улучшения проведения ультразвука в ткани тела человека, используют соединительные среды — гель).

Возвращающиеся сигналы вызывают колебания пьезоэлемента и преобразуются в электрические сигналы – прямой пьезоэлектрический эффект .

В ультразвуковых датчиках применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. Они представляют собой сложные устройства и в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования, как правило одноэлементные и быстрого сканирования в режиме реального времени — механические (многоэлементные) и электронные. В зависимости от формы получаемого изображения различают секторные, линейные и конвексные (выпуклые) датчики. Кроме этого существуют внутриполостные (транспищеводный, трансвагинальный, трансректальный, лапароскопические и внутрипросветные) датчики.

Преимущества приборов быстрого сканирования: возможность оценивать движения органов и структур в реальном времени, значительное сокращение времени на проведение исследования.

Преимущества секторного сканирования:

  • большая зона обзора на глубине, позволяющая охватывать весь орган, например, почку или зародыш ребенка;
  • возможность сканирования через небольшие «окна прозрачности» для ультразвука, например, в межреберье при сканировании сердца, при обследовании женских половых органов.

Недостатки секторного сканирования:

  • наличие «мертвой зоны» 3-4 см от поверхности тела.

Преимущества линейного сканирования:

  • незначительная «мертвая зона», что дает возможность дает обследовать приповерхностные органы;
  • наличие нескольких фокусов по всей длине луча (так называемая динамическая фокусировка), что обеспечивает высокую четкость и разрешающую способность по всей глубине сканирования.

Недостатки линейного сканирования:

  • более узкое поле обзора на глубине по сравнению с секторным сканированием, что не позволяет «видеть» сразу весь орган;
  • невозможность сканирования сердца и затрудненное сканирование женских половых органов.

По принципу действия УЗ-датчики делятся на две группы:

  • Эхоимпульсные – для определения анатомических структур, их визуализации и измерения.
  • Допплеровские – позволяют получать кинематическую характеристику (оценка скорости кровотока в сосудах и сердце).

В основе этой способности лежит эффект Допплера — изменение частоты принимаемого звука при движении крови относительно стенки сосуда. При этом звуковые волны, излучаемые в направлении движения как бы сжимаются, увеличивая частоту звука. Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая уменьшение частоты звука. Сопоставление исходной частоты ультразвука с измененной, позволяет определить доплеровский сдвиг и рассчитать скорость движения крови в просвете сосуда.

Таким образом, импульс УЗ-волн, генерируемый датчиком, распространяется по ткани, и достигнув границы тканей с различной плотностью отражается в сторону трансдьюссера. Полученные электрические сигналы поступают на высокочастотный усилитель, обрабатываются в электронном блоке и отображаются в виде:

  • одномерного (в форме кривой) – в виде пиков на прямой, который позволяет оценить расстояние между слоями тканей, например в офтальмологии (А-метод «амплитуда»), либо исследовать движущие объекты, например, сердце (М-метод).
  • двухмерного (В-метод, в виде картинки) изображения, что позволяет визуализировать различные паренхиматозные органы и сердечно-сосудистую систему.

Для получения изображения в ультразвуковой диагностике используется ультразвук, который излучается трансдьюсером в виде коротких ультразвуковых импульсов (импульсный).

Для характеристики импульсного ультразвука используются дополнительные параметры:

  • Частота повторения импульсов (число импульсов, излучаемых в единицу времени — секунду), измеряется в Гц и кГц.
  • Продолжительность импульса (временная протяженность одного импульса), измеряется в сек. и микросекундах.
  • Интенсивность ультразвука — это отношение мощности волны к площади по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр и, как правило, не превышает 0,01 Вт/кв.см.

В современных ультразвуковых приборах для получения изображения используется ультразвук частотой от 2 до 15 МГц.

В ультразвуковой диагностике обычно применяют датчики с частотами 2,5; 3,0; 3,5; 5,0; 7,5 мегагерц. Чем ниже частота ультразвук, тем больше глубина его проникновения в ткани, ультразвук с частотой 2,5 МГц проникает до 24 см, 3-3,5 МГц – до 16-18 см; 5,0 МГц – до 9-12 см; 7,5 МГц до 4-5 см. Для исследования сердца применяют частоту – 2,2-5 МГц, в офтальмологии – 10-15 МГц.

Биологическое действие ультразвука

и его безопасность для больного постоянно дискутируется в литературе. Ультразвук может вызвать биологическое действие путем механических и тепловых воздействий. Затухание ультразвукового сигнала происходит из-за поглощения, т.е. превращения энергии ультразвуковой волны в тепло. Нагрев тканей увеличивается с увеличением интенсивности излучаемого ультразвука и его частоты. Ряд авторов отмечают т.н. кавитацию — это образование в жидкости пульсирующих пузырьков, заполненных газом, паром или их смесью. Одной из причин возникновения кавитации может являться ультразвуковая волна.

Исследования, связанные с воздействием ультразвука на клетки, экспериментальные работы на растениях и животных, а также эпидемиологические исследования позволили сделать Американскому институту ультразвука следующее заявление:

«Никогда не сообщалось о подтвержденных биологических эффектах у пациентах или лиц, работающих на приборе, вызванных облучением ультразвуком, интенсивность которого типична для современных ультразвуковых диагностических установок. Хотя существует возможность, что такие биологические эффекты могут быть выявлены в будущем, современные данные указывают, что польза для больного при благоразумном использовании диагностического ультразвука перевешивает потенциальный риск, если таковой вообще существует».

Для исследования каких органов и систем используется УЗ- метод?

  • Паренхиматозные органы брюшной полости и забрюшинного пространства, включая и органы малого таза (зародыш и плод).
  • Сердечно-сосудистая система.
  • Щитовидная и молочные железы.
  • Мягкие ткани.
  • Мозг новорожденного.

Какие критерии используются при УЗ-исследованиях:

  1. КОНТУРЫ – четкие, ровные, неровные.
  2. ЭХОСТРУКТУРА:
  • Жидкостная;
  • Полужидкостная;
  • Тканевая – большей или меньшей плотности.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Изучение физических основ ультразвуковой диагностики. Метрологические прослеживаемые акустические параметры, характеризующие ультразвуковое излучение медицинского оборудования. Государственная поверочная схема для средств измерений мощности излучения.

    курсовая работа , добавлен 20.12.2015

    История, принципы выполнения, преимущества и недостатки рентгенологического, ультразвукового и эндоскопического методов исследования пациентов. Применение аспирационной и операционной биопсии в клинической практике. Особенности компьютерной томографии.

    курсовая работа , добавлен 16.06.2015

    Методы диагностики патологии поджелудочной железы и двенадцатиперстной кишки. Показания к назначению ультразвукового исследования. Подготовка пациента к процедуре магнитно-резонансной томографии. Эндоскопическая ретроградная панкреатохолангиография.

    презентация , добавлен 02.03.2013

    Сущность и значение эхокардиографии как широко распространенной современной ультразвуковой методики, применяемой для диагностики многообразной сердечной патологии. Принципы работы ультразвукового датчика. Показаниями для чреспищеводной эхокардиографии.

    презентация , добавлен 16.05.2016

    Формы вирусного гепатита. Диагностические возможности ультразвукового метода. Радиоизотопные методы исследования. Диагностика желтухи при желчнокаменной болезни и новообразованиях гепатопанкреатодуоденальной зоны (рак головки поджелудочной железы).

    презентация , добавлен 13.05.2014

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.

    курсовая работа , добавлен 15.06.2013

    Значение определения опухолевых маркеров. Компьютерная томография грудной клетки. Преимущества виртуальной колоноскопии. Применение эндоскопических методов исследования в диагностике и профилактике ЗНО. Достоинства метода ультразвуковой диагностики.

    Доктора часто направляют пациента на проведение ультразвуковой диагностики. Это является рутинным и вспомогательным диагностическим методом исследования внутренних органов. Чтобы понять, как проводится УЗИ и для чего необходима процедура, стоит рассмотреть, что это такое и из чего состоит.

    Как получается и проводится ультразвук

    Пьезоэлектрический эффект – основа для создания уникального ультразвука. Благодаря воздействию электрического напряжения изменяется конфигурация кристаллов и керамики датчика. Образуются механические колебания, посылаемые внутреннему органу, тот отражает сигнал, который воспринимается пьезоэлектрическим материалом.

    Для достижения высокой точности исследования необходима соединяющая среда, ею выступает УЗ-гель. Чтобы получить полную картину о состоянии внутреннего органа необходимо настроить длину волны. Чем меньше глубина проникновения, тем точнее результат. Волна должна охватывать весь исследуемый объект.

    Для фокусирования УЗ-луча применяется «акустическая линза» — часть датчика, которая непосредственно контактирует с кожными покровами. Она создает правильную геометрию луча.

    Что такое ультразвуковое исследование

    УЗ-исследование – малоинвазивный метод обследования внутренних органов человека, состояния кровеносных сосудов и их проходимости. В медицинской практике широко используется ввиду своей доступности и информативности.

    Виды УЗИ диагностики:

    1. желчный пузырь и желчевыводящие протоки;
    2. поджелудочная железа;
    3. селезенка;
  • УЗИ забрюшинного пространства: , патологическое накопление жидкости.
  • УЗИ органов малого таза:
    1. у женщин: матка, яичники, маточные трубы, шейка матки;
    2. у мужчин: предстательная железа, ;
    3. мочевой пузырь;
    4. мочеточники;
  • УЗИ гемососудов конечностей и туловища (допплерография).
  • УЗИ суставов.
  • (Эхо-кардиоскопия).
  • УЗ в педиатрии: исследование головного мозга при незакрытом родничке и прочее.
  • В силу особенностей ультразвуковой волны можно исследовать органы для скрининга онкологических патологий, диффузных изменений в тканях, наличие конкрементов в желчном, мочевом пузыре, а также почках, врожденные и приобретенные аномалии строения, накопление патологической жидкости.

    Ограничением для исследования служат органы с наличием газа внутри них, таких как желудок, кишечник.

    Преимущества УЗ-диагностики

    Главным плюсом обследования служит безопасность УЗ-луча. Преимущества:

    • высокая точность и информативность;
    • диагностика развития заболеваний в начальной стадии;
    • нет ограничений по количеству манипуляций, поэтому появляется возможность отслеживать состояние органа в динамике после консервативного или оперативного лечения;
    • отсутствие лучевой нагрузки, благодаря чему можно назначать новорожденным детям.

    Как выполняется УЗИ

    Больного укладывают на кушетку, просят освободить от одежды предполагаемое место исследования. В зависимости от того, какая область требует осмотра, существует несколько методик проведения процедуры:

    1. Трансабдоминальная – пациенту на кожные покровы наносят специальный гель, подносят датчик, прикладывают к коже и водят по поверхности.
    2. Трансвагинальная – удлиненный датчик погружают в презерватив, наносят немного геля и вводят женщине во влагалище. Такая методика наиболее информативна, поскольку наиболее плотно прилегает к исследуемым структурам.
    3. Трансректальная – на удлиненный датчик одевается презерватив, наносится гель и вводится в прямую кишку. Обычно проводится мужчинам для детального осмотра предстательной железы.

    Ультразвуковое исследование – информативный метод диагностики, однако не стоит самостоятельно интерпретировать полученный результат. Разобраться в этом может квалифицированный доктор.

    Ультразвук в медицине

    Методы ультразвуковой диагностики

    4.2.1. Эхография

    4.2.2. Доплерография

    4.2.3. Методы получения изображения

    Использование ультразвуковых методов диагностики в практической медицине

    4.3.1. Измерение скорости кровотока

    4.3.2. Ультразвуковая диагностика нарушений мозгового кровообращения

    4.3.3. Эхоэнцефалография

    4.3.4. Ультразвуковая диагностика некоторых внутренних органов

    4.3.5. Ультразвуковая диагностика в кардиологии

    4.3.6. Ультразвуковая диагностика в педиатрии

    4.3.7. Ультразвуковая диагностика в гинекологии и акушерстве

    4.3.8. Ультразвуковая диагностика в эндокринологии

    4.3.9. Ультразвуковая диагностика в офтальмологии

    4.3.10. Преимущества и недостатки ультразвуковой диагностики

    Ультразвук в медицине

    Ультразвук в медицинской практике находит исключительно широкое применение. Он используется в диагностике (энцефалография, кардиография, остеоденситометрия и др.), лечении (дробление камней, фонофорез, акупунктура и др.), приготовлении лекарств, очистка и стерилизации инструмента и препаратов.

    УЗ используется в кардиологии, хирургии, стоматологии, урологии, акушерстве, гинекологии, педиатрии, офтальмологии абдоминальной патологии и других областях медицинской практики.

    Ультразвуковые методы диагностики.

    В ультразвуковой диагностике используется как отражение волн (эхо) от неподвижных объектов (частота волны не изменяется), так и отражение от подвижных объектов (частота волны изменяется – эффект Доплера).

    Поэтому ультразвуковые диагностические методы делятся на эхографические и доплерографические.

    Ультразвуковое просвечивание основано на различном поглощении ультразвука разными тканями организма. При исследовании внутреннего органа в него направляют ультразвуковую волну определенной интенсивности и регистрируют интенсивность прошедшего сигнала датчиком, расположенным по другую сторону органа. По степени изменения интенсивности воспроизводится картина внутреннего строения органа.



    Эхография

    Эхография - это метод исследования структуры и функции органов и получения изображения среза органов, соответствующего их реальным размерам и состоянию.

    В эхографии различают эхолокацию и ультразвуковое сканирование.

    Эхолокация - это метод регистрации интенсивности отражённого сигнала (эхо) от границы раздела фаз.

    Общие принципы формирования эхосигналов от границ исследуемых тканей и органов схожи с известными принципами радиолокации и гидролокации. Исследуемый объект облучается короткими УЗ импульсами, энергия которых сконцентрирована вдоль узкого луча.

    Импульс, распространяясь в среде от источника УЗ, дойдя до границы раздела сред с разными волновыми сопротивлениями Z, отражается от границы и попадает на приёмник УЗ (датчик). Энергия отраженного импульса тем больше, чем больше разность волновых сопротивлений этих сред. Зная скорость распространения УЗ импульса (в биологических тканях, в среднем, 1540 м/с) и время, за которое импульс прошел расстояние до границы сред и обратно, можно вычислить расстояние d от источника УЗ до этой границы:

    Это соотношение лежит в основе УЗ визуализации объектов при эхолокации.

    Перемещение датчика позволяет выявить размеры, форму и расположение исследуемого объекта.

    Фактически скорость УЗ варьируется для различных тканей в пределах +- 5%. Поэтому, с точностью 5% можно определять расстояния до границ объекта и с точностью 10% протяжённость исследуемого объекта вдоль луча.

    При эхолокации излучаются только короткие импульсы. В медицинской УЗИ аппаратуре генератор УЗ работает в импульсном режиме с частотой 2,5 - 4,5 МГц.

    Например, в эхокардиографии используют ультразвуковые импульсы длительностью около 1 микросекунды. Датчик работает в режиме излучения менее 0,1% времени, а остальное время (99,9%) в режиме приёма. При этом пациент получает минимальные дозы УЗ облучения, обеспечивающие безопасный уровень воздействия на ткани.

    К важным преимуществам эхографии следует отнести ее неионизирующую природу и низкую интенсивность используемой энергии. Безопасность метода определяется также краткостью воздействия. Как уже отмечалось, ультразвуковые проебразователи работают в режиме излучения только 0,1 -0,14 времени цикла. В связи с этим при обычном обследовании фактически время облучения составляет около 1 с. К этому необходимо добавить, что до 50% энергии ультразвуковых волн, затухая, не достигает исследуемого объекта.

    Ультразвуковое сканирование

    Для получения изображения органов используется ультразвуковое сканирование .

    Сканирование – перемещение ультразвукового пучка направленного на объект во время исследования. Сканирование обеспечивает регистрацию сигналов последовательно от разных точек объекта; изображение возникает на экране монитора и регистрируется в памяти прибора и может быть воспроизведено на фотобумаге или пленке. Изображение можно подвергать математической обработке, измеряя, в частности, величину разных элементов объекта. Яркость каждой точки на экране находится в прямой зависимости от интенсивности эхо-сигнала. Изображение на экране монитора представлено обычно 16-ю оттенками серого цвета или цветной палитрой, отражающими акустическую структуру тканей.

    В ультразвуковой диагностике используется три типа сканирования: параллельное (параллельное распространение УЗ волн), секторное (распространение УЗ волн в виде расходящегося пучка) и сложное (при движении или покачивании датчика).

    Параллельное сканирование

    Параллельное сканирование осуществляется с использованием многокристаллических датчиков, обеспечивающих параллельное распространение УЗ колебаний. При исследовании органов брюшной полости быстрее осуществляется поиск необходимых анатомических ориентиров. Такой вид сканирования обеспечивает видение широкого обзорного поля в близкой зоне и высокой плотности акустических линий в дальней зоне.

    Секторное сканирование

    Секторное сканирование обеспечивает преимущество малой площади контакта с объектом, когда ограничен доступ в исследуемую зону (глаза, сердца, мозга через родничок). Секторное сканирование обеспечивает широкое обзорное поле в дальней зоне.

    Выпукло секторное сканирование

    Выпукло секторное сканирование, являющееся разновидностью секторного, отличается тем, что кристаллы датчика скомпонованы на выпуклой поверхности. Это обеспечивает широкое обзорное поле, при сохранении хорошего обзорного поля в ближней зоне.

    Сложное сканирование

    Сложное сканирование осуществляется при движении датчика в направлении, перпендикулярном линии распространения УЗ луча. Поскольку датчик находится в постоянном движении, а экран имеет длительное послесвечение, отражённые импульсы сливаются, формируя изображение сечения обследуемого органа на заданной глубине. При сложном сканировании датчик фиксируют на специальном штативе. Кроме движения датчика по поверхности, осуществляется его покачивание на определенный угол вокруг его оси. При этом обеспечивается увеличение количества воспринимаемой отражённой энергии.

    ДОПЛЕРОГРАФИЯ

    Доплерография представляет собой метод диагностики, основанный на эффекте Доплера.

    Эффект Доплера

    В 1842 г. ДОПЛЕР (Допплер - Doppler) Кристиан, австрийский физик и астроном, указал на существование эффекта, названного позже его именем.

    Эффект Доплера представляет изменение частоты волны, излучённой источником, при движении источника или приёмника относительно среды в которой распространяется волна.

    В доплерографии это выражается в изменении частоты УЗ волн излучённых неподвижным источником при отражении от движущихся объектов и принятых неподвижным приёмником.

    Если генератор излучает ультразвук с частотой ע Г, а изучаемый объект движется со скоростью V, то, частота УЗ ע П зарегистрированная приёмником (датчиком) может быть найдена по формуле:

    где V - скорость тела в среде,

    С - скорость распространения УЗ волны в среде.

    Разность частот волн, излучаемых генератором и воспринимаемых приёмником, עд называется доплеровским сдвигом частоты. В медицинских исследованиях доплеровский сдвиг частот рассчитывается по формуле:

    где V - скорость движения объекта, С - скорость распространения УЗ в среде, ע Г - исходная частота генератора.

    По сдвигу частоты определяется скорость движения исследуемого объекта.

    При Доплеровских методах используют как непрерывное излучение, так и импульсные сигналы.

    В непрерывном режиме одновременно работают источник и приёмник излучения. Полученный сигнал обрабатывается и определяется скорость движения объекта.

    В импульсном режиме также используется один датчик на излучение и приём. Он периодически короткое время работает как излучатель, а в промежутках между излучением, как приемник. Пространственное разрешение достигается благодаря излучению коротких УЗ импульсов.

    Доплерография эффективно используется в диагностике кровотока и сердца. При этом определяется зависимость изменения частоты пришедшего сигнала от скорости движения эритроцитов или подвижных тканей сердца.

    Если скорость объекта v об много меньше скорости УЗ волны v уз, то доплеровский сдвиг частоты F относительно частоты исходной волны f запишется в виде:

    F= 2fcosθ v об. /v уз.

    Здесь θ – угол между направлением потока и направлением УЗ луча (Рис. 23).

    Кровь
    Датчик

    Удвоение сдвига частоты получается из-за того, что объекты сперва играют роль движущихся приемников, а затем движущихся излучателей.

    Из приведенной формулы также следует, что если объекты движутся навстречу датчикам, то F>0, если от датчиков, то F<0.

    Если измерить F, то, зная угол θ, можно определить скорость движения объекта.

    К примеру, если скорость УЗ в ткани равна 1540 м/с, а частота УЗ зондирующего сигнала 5-10 МГц, то скорость кровотока может составлять 1-100 см/с, а доплеровский сдвиг частоты будет составлять 10 2 -10 4 Гц, т.е. доплеровский сдвиг частот будет проявляться в звуковом диапазоне частот.

    Метод доплерографии используются также для исследования магистральных сосудов головы (транскраниальная доплерография).

    Ультразвуковое исследование (УЗИ) – одна из распространенных методик диагностики, при которой используются ультразвуковые волны для получения изображения внутренних органов человека. В отличие от других подобных методик, УЗИ не вызывает дискомфорта и негативного влияния на организм.

    Подготовка пациента к УЗИ

    Для проведения оптимально точной диагностики путем ультразвукового исследования, пациенту необходимо проделать ряд манипуляций и предписаний перед проведением УЗИ, а именно:


    Процесс проведения УЗИ

    В назначенное время медицинский персонал приглашает пациента разместится на специальной кушетке.

    • живот;
    • молочные железы;
    • и т.д.

    Врач обрабатывает кожу исследуемого специальным гелем, который помогает качественно провести ультразвуковые волны сквозь тело. Далее в различных местах тела пациента врачом прижимается чувствительный датчик, который ретранслирует изображение внутренних органов на мониторе аппарата.

    Стоимость УЗИ

    Стоимость ультразвукового исследования зависит от ряда факторов, которые устанавливаются индивидуально, в соответствии с используемой методикой и диагнозом пациента. Более детальную у наших специалистов.

    Несомненно, каждый человек ищет самые лучшие способы исследования его организма. Именно поэтому мы готовы помочь Вам. Для этого Вам необходимо обратится за консультацией к нашим специалистам, заполнив .