Что такое скорость химической реакции как её определяют. Факторы влияющие на скорость химической реакции

Как любые процессы, химические реакции происходят во времени и поэтому характеризуются той или иной скоростью.

Раздел химии, изучающий скорость химических реакций и механизм их протекания, называется химической кинетикой . Химическая кинетика оперирует понятиями «фаза», «система». Фаза это часть системы, отделенная от других ее частей поверхностью раздела.

Системы бывают гомогенные и гетерогенные. Гомогенные системы состоят из одной фазы . Например, воздух или любая смесь газов, раствор соли. Гетерогенные системы состоят из двух или нескольких фаз . Например, жидкая вода – лед – пар, раствор соли + осадок.

Реакции, протекающие в гомогенной системе , называются гомогенными . Например, N 2(г) + 3H 2(г) = 2NH 3(г) . Они протекают во всем объеме. Реакции, протекающиев гетерогенной системе , называютсягетерогенными . Например, С (к) + О 2(г) = СО 2(г) . Они протекают на поверхности раздела фаз.

Скорость химической реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

1. Природа реагирующих веществ.

Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы являются мало реакционноспособными. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

2. Концентрация.

С увеличением концентрации чаще происходят столкновения молекул реагирующих веществ – скорость реакции возрастает.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции

nA (г) + mB (г) = pAB (г)

зависимость скорости реакции выражается уравнением:

где С А и С В – концентрации реагирующих веществ, моль/л; k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид:

υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.



Для гетерогенных реакций (когда вещества находятся в разных агрегатных состояниях) скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЭДМ не входит:

nA (к) + mB (г) = pAB (г)

Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к)

3. Температура.

При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними. Чтобы реакция осуществлялась, сталкивающиеся молекулы должны обладать определенным избытком энергии. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества , называется энергией активации . Энергию активации (Е а ) выражают в кДж/моль. Ее величина зависит от природы реагирующих веществ, т.е. для каждой реакции своя энергия активации. Молекулы, обладающие энергией активации , называют активными . Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С.

4. Поверхность соприкосновения реагирующих веществ.

Для гетерогенных систем, чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ – путем их растворения.

5. Катализаторы.

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

К гомогенному относятся такие процессы, в которых катализатор находится в том же агрегатном состоянии, что и реагирующие вещества.

2SO 2(г) + O 2(г) 2SO 3(г)

Действие гомогенного катализатора заключается в образовании более или менее прочных промежуточных активных соединений, из которых он затем полностью регенерируется.

К гетерогенному катализу относятся такие процессы, в которых катализатор и реагирующие вещества находятся в различных агрегатных состояниях, а реакция протекает на поверхности катализатора.

N 2(г) + 3H 2(г) 2NH 3(г)

Механизм действия гетерогенных катализаторов сложнее гомогенных. Значительную роль в этих процессах играют явления поглощения газообразных и жидких веществ на поверхности твердого вещества – явления адсорбции. В результате адсорбции увеличивается концентрация реагирующих веществ, повышается их химическая активность, что приводит к увеличению скорости реакции.

Некоторые химические реакции происходят практически мгновенно (взрыв кислородно-водородной смеси, реакции ионного обмена в водном растворе), вторые — быстро (горение веществ, взаимодействие цинка с кислотой), третьи — медленно (ржавление железа, гниение органических остатков). Известны настолько медленные реакции, что человек их просто не может заметить. Так, например, преобразование гранита в песок и глину происходит в течение тысяч лет.

Другими словами, химические реакции могут протекать с разной скоростью .

Но что же такое скорость реакции ? Каково точное определение данной величины и, главное, ее математическое выражение?

Скоростью реакции называют изменение количества вещества за одну единицу времени в одной единице объема. Математически это выражение записывается как:

Где n 1 и n 2 – количество вещества (моль) в момент времени t 1 и t 2 соответственно в системе объемом V .

То, какой знак плюс или минус (±) будет стоять перед выражением скорости, зависит от того, на изменение количества какого вещества мы смотрим – продукта или реагента.

Очевидно, что в ходе реакции происходит расход реагентов, то есть их количество уменьшается, следовательно, для реагентов выражение (n 2 — n 1) всегда имеет значение меньше нуля. Поскольку скорость не может быть отрицательной величиной, в этом случае перед выражением нужно поставить знак «минус».

Если же мы смотрим на изменение количества продукта, а не реагента, то перед выражением для расчета скорости знак «минус» не требуется, поскольку выражение (n 2 — n 1) в этом случае всегда положительно, т.к. количество продукта в результате реакции может только увеличиваться.

Отношение количества вещества n к объему, в котором это количество вещества находится, называют молярной концентрацией С :

Таким образом, используя понятие молярной концентрации и его математическое выражение, можно записать другой вариант определения скорости реакции:

Скоростью реакции называют изменение молярной концентрации вещества в результате протекания химической реакции за одну единицу времени:

Факторы, влияющие на скорость реакции

Нередко бывает крайне важно знать, от чего зависит скорость той или иной реакции и как на нее повлиять. Например, нефтеперерабатывающая промышленность в буквальном смысле бьется за каждые дополнительные полпроцента продукта в единицу времени. Ведь учитывая огромное количество перерабатываемой нефти, даже полпроцента вытекает в крупную финансовую годовую прибыль. В некоторых же случаях крайне важно какую-либо реакцию замедлить, в частности коррозию металлов.

Так от чего же зависит скорость реакции? Зависит она, как ни странно, от множества различных параметров.

Для того чтобы разобраться в этом вопросе прежде всего давайте представим, что происходит в результате химической реакции, например:

A + B → C + D

Написанное выше уравнение отражает процесс, в котором молекулы веществ А и В, сталкиваясь друг с другом, образуют молекулы веществ С и D.

То есть, несомненно, для того чтобы реакция прошла, как минимум, необходимо столкновение молекул исходных веществ. Очевидно, если мы повысим количество молекул в единице объема, число столкновений увеличится аналогично тому, как возрастет частота ваших столкновений с пассажирами в переполненном автобусе по сравнению с полупустым.

Другими словами, скорость реакции возрастает при увеличении концентрации реагирующих веществ.

В случае, когда один из реагентов или сразу несколько являются газами, скорость реакции увеличивается при повышении давления, поскольку давление газа всегда прямо пропорционально концентрации составляющих его молекул.

Тем не менее, столкновение частиц является, необходимым, но вовсе недостаточным условием протекания реакции. Дело в том, что согласно расчетам, число столкновений молекул реагирующих веществ при их разумной концентрации настолько велико, что все реакции должны протекать в одно мгновение. Тем не менее, на практике этого не происходит. В чем же дело?

Дело в том, что не всякое соударение молекул реагентов обязательно будет эффективным. Многие соударения являются упругими – молекулы отскакивают друг от друга словно мячи. Для того чтобы реакция прошла, молекулы должны обладать достаточной кинетической энергией. Минимальная энергия, которой должны обладать молекулы реагирующих веществ для того, чтобы реакция прошла, называется энергией активации и обозначается как Е а. В системе, состоящей из большого количества молекул, существует распределение молекул по энергии, часть из них имеет низкую энергию, часть высокую и среднюю. Из всех этих молекул только у небольшой части молекул энергия превышает энергию активации.

Как известно из курса физики, температура фактически есть мера кинетической энергии частиц, из которых состоит вещество. То есть, чем быстрее движутся частицы, составляющие вещество, тем выше его температура. Таким образом, очевидно, повышая температуру мы по сути увеличиваем кинетическую энергию молекул, в результате чего возрастает доля молекул с энергией, превышающей Е а и их столкновение приведет к химической реакции.

Факт положительного влияния температуры на скорость протекания реакции еще в 19м веке эмпирически установил голландский химик Вант Гофф. На основании проведенных им исследований он сформулировал правило, которое до сих пор носит его имя, и звучит оно следующим образом:

Скорость любой химической реакции увеличивается в 2-4 раза при повышении температуры на 10 градусов.

Математическое отображение данного правила записывается как:

где V 2 и V 1 – скорость при температуре t 2 и t 1 соответственно, а γ – температурный коэффициент реакции, значение которого чаще всего лежит в диапазоне от 2 до 4.

Часто скорость многих реакций удается повысить, используя катализаторы .

Катализаторы – вещества, ускоряющие протекание какой-либо реакции и при этом не расходующиеся.

Но каким же образом катализаторам удается повысить скорость реакции?

Вспомним про энергию активации E a . Молекулы с энергией меньшей, чем энергия активации в отсутствие катализатора друг с другом взаимодействовать не могут. Катализаторы, изменяют путь, по которому протекает реакция подобно тому, как опытный проводник проложит маршрут экспедиции не напрямую через гору, а с помощью обходных троп, в результате чего даже те спутники, которые не имели достаточно энергии для восхождения на гору, смогут перебраться на другую ее сторону.

Не смотря на то что катализатор при проведении реакции не расходуется, тем не менее он принимает в ней активное участие, образуя промежуточные соединения с реагентами, но к концу реакции возвращается к своему изначальному состоянию.

Кроме указанных выше факторов, влияющих на скорость реакции, если между реагирующими веществами есть граница раздела (гетерогенная реакция), скорость реакции будет зависеть также и от площади соприкосновения реагентов. Например, представьте себе гранулу металлического алюминия, которую бросили в пробирку с водным раствором соляной кислоты. Алюминий – активный металл, который способен реагировать с кислотами неокислителями. С соляной кислотой уравнение реакции выглядит следующим образом:

2Al + 6HCl → 2AlCl 3 + 3H 2

Алюминий представляет собой твердое вещество, и это значит, что реакция с соляной кислотой идет только на его поверхности. Очевидно, что если мы увеличим площадь поверхности, предварительно раскатав гранулу алюминия в фольгу, мы тем самым предоставим большее количество доступных для реакции с кислотой атомов алюминия. В результате этого скорость реакции увеличится. Аналогичным образом увеличения поверхности твердого вещества можно добиться измельчением его в порошок.

Также на скорость гетерогенной реакции, в которой реагирует твердое вещество с газообразным или жидким, часто положительно влияет перемешивание, что связано с тем, что в результате перемешивания достигается удаление из зоны реакции скапливающихся молекул продуктов реакции и «подносится» новая порция молекул реагента.

Последним следует отметить также огромное влияние на скорость протекания реакции и природы реагентов. Например, чем ниже в таблице Менделеева находится щелочной металл, тем быстрее он реагирует с водой, фтор среди всех галогенов наиболее быстро реагирует с газообразным водородом и т.д.

Резюмируя все вышесказанное, скорость реакции зависит от следующих факторов:

1) концентрация реагентов: чем выше, тем больше скорость реакции

2) температура: с ростом температуры скорость любой реакции увеличивается

3) площадь соприкосновения реагирующих веществ: чем больше площадь контакта реагентов, тем выше скорость реакции

4) перемешивание, если реакция происходит меду твердым веществом и жидкостью или газом перемешивание может ее ускорить.

Механизмы протекания химических превращений и их скорости изучает химическая кинетика. Химические процессы протекают во времени с различными скоростями. Какие-то происходят быстро, почти мгновенно, для протекания других требуется весьма продолжительное время.

Скорость реакции - скорость с которой расходуются реагенты (их концентрация уменьшается) или образуются продукты реакции в единице объёма.

Факторы, способные влиять на скорость химической реакции

На то, насколько быстро будет происходить химическое взаимодействие, могут повлиять следующие факторы:

  • концентрация веществ;
  • природа реагентов;
  • температура;
  • присутствие катализатора;
  • давление (для реакций в газовой среде).

Таким образом, изменяя определённые условия протекания химического процесса, можно повлиять на то, насколько быстро будет протекать процесс.

В процессе химического взаимодействия частицы реагирующих веществ сталкиваются друг с другом. Количество таких совпадений пропорционально числу частиц веществ в объёме реагирующей смеси, а значит и пропорционально молярным концентрациям реагентов.

Закон действующих масс описывает зависимость скорости реакции от молярных концентраций веществ, вступающих во взаимодействие.

Для элементарной реакции (А + В → …) данный закон выражается формулой:

υ = k ∙С A ∙С B,

где k - константа скорости; С A и С B - молярные концентрации реагентов, А и В.

Если одно из реагирующих веществ находится в твёрдом состоянии, то взаимодействие происходит на поверхности раздела фаз, в связи с этим концентрация твёрдого вещества не включается в уравнение кинетического закона действующих масс. Для понимания физического смысла константы скорости, необходимо принять С, А и С В равными 1. Тогда становится понятно, что константа скорости равна скорости реакции при концентрациях реагентов, равных единице.

Природа реагентов

Так как в процессе взаимодействия разрушаются химические связи реагирующих веществ и образуются новые связи продуктов реакции, то большую роль будет играть характер связей, участвующих в реакции соединений и строение молекул реагирующих веществ.

Площадь поверхности соприкосновения реагентов

Такая характеристика, как площадь поверхности соприкосновения твёрдых реагентов, на протекание реакции влияет, порой, довольно значительно. Измельчение твёрдого вещества позволяет увеличить площадь поверхности соприкосновения реагентов, а значит и ускорить протекание процесса. Площадь соприкосновения растворимых веществ легко увеличивается растворением вещества.

Температура реакции

При увеличении температуры энергия сталкивающихся частиц возрастёт, очевидно, что с ростом температуры и сам химический процесс будет ускоряться. Наглядным примером того, как увеличение температуры влияет на процесс взаимодействия веществ, можно считать приведённые в таблице данные.

Таблица 1. Влияние изменения температуры на скорость образования воды (О 2 +2Н 2 →2Н 2 О)

Для количественного описания того, как температура может влиять на скорость взаимодействия веществ используют правило Вант-Гоффа. Правило Вант-Гоффа состоит в том, что при повышении температуры на 10 градусов, происходит ускорение в 2−4 раза.

Математическая формула, описывающая правило Вант-Гоффа, выглядит следующим образом:

Где γ – температурный коэффициент скорости химической реакции (γ = 2−4).

Но гораздо более точно описывает температурную зависимость константы скорости уравнение Аррениуса:

Где R - универсальная газовая постоянная, А - множитель, определяемый видом реакции, Е, А - энергия активации.

Энергией активации называют такую энергию, которую должна приобрести молекула, чтобы произошло химическое превращение. То есть она является неким энергетическим барьером, который необходимо будет преодолеть сталкивающимся в реакционном объёме молекулам для перераспределения связей.

Энергия активации не зависит от внешних факторов, а зависит от природы вещества. Значение энергии активации до 40 - 50 кДж/моль позволяет веществам реагировать друг с другом довольно активно. Если же энергия активации превышает 120 кДж/моль , то вещества (при обычных температурах) будут реагировать очень медленно. Изменение температуры приводит к изменению количества активных молекул, то есть молекул, достигших энергии большей, чем энергия активации, а значит способных к химическим превращениям.

Действие катализатора

Катализатором называют вещество, способное ускорять процесс, но не входящее в состав его продуктов. Катализ (ускорение протекания химического превращения) разделяют на · гомогенный, · гетерогенный. Если реагенты и катализатор находятся в одинаковых агрегатных состояниях, то катализ называют гомогенным, если в различных, то гетерогенным. Механизмы действия катализаторов разнообразны и достаточно сложны. Кроме того, стоит отметить, что для катализаторов характерна избирательность действия. То есть один и тот же катализатор, ускоряя одну реакцию, может никак не изменять скорость другой.

Давление

Если в превращении участвуют газообразные вещества, то на скорость протекания процесса будет влиять изменение давления в системе. Это происходит потому , что для газообразных реагентов изменение давления приводит к изменению концентрации.

Экспериментальное определение скорости химической реакции

Определить быстроту протекания химического превращения экспериментально можно, получив данные о том, как в единицу времени меняется концентрация веществ, вступающих в реакцию, или продуктов. Методы получения таких данных делят на

  • химические,
  • физико-химические.

Химические методы достаточно просты, доступны и точны. С их помощью скорость определяют, непосредственно замеряя концентрацию или количество вещества реагентов или продуктов. В случае медленной реакции, для контроля за тем, как расходуется реагент отбирают пробы. После чего определяют содержание в пробе реагента. Осуществляя отбор проб через равные промежутки времени, можно получить данные об изменении количества вещества в процессе взаимодействия. Чаще всего используют такие виды анализа, как титриметрия и гравиметрия.

Если реакция протекает быстро, то чтобы отобрать пробу, её приходится останавливать. Это можно сделать с помощью охлаждения, резкого удаления катализатора , также можно произвести разбавление либо перевести один из реагентов в не реакционноспособное состояние.

Методы физико-химического анализа в современной экспериментальной кинетике используются чаще, чем химические. С их помощью можно наблюдать изменение концентраций веществ в реальном времени. При этом реакцию нет необходимости останавливать и отбирать пробы.

Физико-химические методы основываются на измерении физического свойства, зависящего от количественного содержания в системе определённого соединения и изменяющегося со временем. Например, если в реакции участвуют газы, то таким свойством может быть давление. Также измеряют электропроводность, показатель преломления, спектры поглощения веществ.

Скорость химических реакций. Химическое равновесие

План:

1. Понятие о скорости химической реакции.

2. Факторы, влияющие на скорость химической реакции.

3. Химическое равновесие. Факторы, влияющие на смещение равновесие. Принцип Ле-Шателье.

Химические реакции протекают с разными скоростями. Очень быстро протекают реакции в водных растворах. Например, если слить растворы хлорида бария и сульфата натрия, то тут же немедленно выпадает белый осадок сульфата бария. Быстро, но не мгновенно этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, появляется налет на медных и бронзовых изделиях, гниет листва.

Изучением скорости химической реакции, а также выявлением её зависимости от условий проведения процесса занимается наука - химическая кинетика.

Если реакции протекают в однородной среде, например, в растворе или газовой фазе, то взаимодействие реагирующих веществ происходит во всем объёме. Такие реакции называются гомогенными.

Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью) или между веществами, не способными образовывать гомогенную среду (например, между двумя несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называются гетерогенными.

υ гомогенной реакции определяется изменением количества вещества в единицу в единице объёма:

υ =Δ n / Δt ∙V

где Δ n – изменение числа молей одного из веществ (чаще всего исходного, но может быть и продукта реакции), (моль);

V – объем газа или раствора (л)

Поскольку Δ n / V = ΔC (изменение концентрации), то

υ =Δ С / Δt (моль/л∙ с)

υ гетерогенной реакции определяется изменением количества вещества в единицу времени на единице поверхности соприкосновения веществ.

υ =Δ n / Δt ∙ S

где Δ n – изменение количества вещества (реагента или продукта), (моль);

Δt – интервал времени (с, мин);

S – площадь поверхности соприкосновения веществ (см 2 , м 2)

Почему скорость разных реакций не одинакова?

Для того чтобы началась химическая реакция, молекулы реагирующих веществ должны столкнуться. Но не каждое их столкновение приводит к химической реакции. Для того чтобы столкновение привело к химической реакции, молекулы должны иметь достаточно высокую энергию. Частицы, способные при столкновении, вступать в химическую реакцию, называются активными. Они обладают избыточной энергией по сравнению со средней энергией большинства частиц – энергией активации Е акт. Активных частиц в веществе намного меньше, чем со средней энергией, поэтому для начала многих реакций системе необходимо сообщить некоторую энергию (вспышка света, нагревание, механический удар).


Энергетический барьер (величина Е акт ) разных реакций различен, чем он ниже, тем легче и быстрее протекает реакция.

2. Факторы, влияющие на υ (количество соударений частиц и их эффективность).

1) Природа реагирующих веществ: их состав, строение => энергия активации

▪ чем меньше Е акт , тем больше υ;

Если Е акт < 40 кДж/моль, то это значит, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, т.к. в этих реакциях участвуют разноименнозаряженные частицы, и энергия активации в этих случаях ничтожно мала.

Если Е акт > 120 кДж/моль, то это означает, что лишь ничтожная часть столкновений между взаимодействующим частицами приводит к реакции. Скорость таких реакций очень мала. Например, ржавление железа, или

протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если Е акт имеют промежуточные значения (40 – 120 кДж/моль), то скорость таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этанолом, обесцвечивание этиленом бромной воды и др.

2) Температура : при t на каждые 10 0 С, υ в 2-4 раза (правило Вант-Гоффа).

υ 2 = υ 1 ∙ γ Δt/10

При t, количество активных частиц (с Е акт ) и их активных соударений.

Задача 1. Скорость некоторой реакции при 0 0 С равна 1 моль/л ∙ ч, температурный коэффициент реакции равен 3. Какой будет скорость данной реакции при 30 0 С?

υ 2 = υ 1 ∙ γ Δt/10

υ 2 =1∙3 30-0/10 = 3 3 =27 моль/л∙ч

3) Концентрация: чем больше, тем чаще происходят соударения и υ . При постоянной температуре для реакции mA + nB = C по закону действующих масс:

υ = k ∙ С A m ∙ C B n

где k – константа скорости;

С – концентрация (моль/л)

Закон действующих масс:

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

З.д.м. не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности и их концентрации обычно остаются постоянными.

Задача 2. Реакция идет по уравнению А +2В → С. Во сколько раз и как изменится скорость реакции, при увеличении концентрации вещества В в 3 раза?

Решение:υ = k ∙ С A m ∙ C B n

υ = k ∙ С A ∙ C B 2

υ 1 = k ∙ а ∙ в 2

υ 2 = k ∙ а ∙ 3 в 2

υ 1 / υ 2 = а ∙ в 2 / а ∙ 9 в 2 = 1/9

Ответ: увеличится в 9 раз

Для газообразных веществ скорость реакции зависит от давления

Чем больше давление, тем выше скорость.

4) Катализаторы – вещества, которые изменяют механизм реакции, уменьшают Е акт => υ .

▪ Катализаторы остаются неизменными по окончании реакции

▪ Ферменты – биологические катализаторы, по природе белки.

▪ Ингибиторы – вещества, которые ↓ υ

5) Для гетерогенных реакций υ зависит также:

▪ от состояния поверхности соприкосновения реагирующих веществ.

Сравните: в 2 пробирки налили одинаковые объёмы раствора серной кислоты и одновременно опустили в одну – железный гвоздь, в другую – железные опилки.Измельчение твердого вещества приводит к увеличению числа его молекул, которые могут одновременно вступить в реакцию. Следовательно, во второй пробирке скорость реакции будет больше, чем в первой.

Физическая химия: конспект лекций Березовчук А В

2. Факторы, влияющие на скорость химической реакции

Для гомогенных, гетерогенных реакций:

1) концентрация реагирующих веществ;

2) температура;

3) катализатор;

4) ингибитор.

Только для гетерогенных:

1) скорость подвода реагирующих веществ к поверхности раздела фаз;

2) площадь поверхности.

Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.

NO 2 – оксид азота (IV) – лисий хвост, СО – угарный газ, монооксид углерода.

Если их окислить кислородом, то в первом случае реакция пойдет мгновенно, стоит приоткрыть пробку сосуда, во втором случае реакция растянута во времени.

Концентрация реагирующих веществ будет рассмотрена ниже.

Голубая опалесценция свидетельствует о моменте выпадения серы, чем выше концентрация, тем скорость выше.

Рис. 10

Чем больше концентрации Na 2 S 2 O 3 , тем меньше времени идет реакция. На графике (рис. 10) изображена прямо пропорциональная зависимость. Количественная зависимость скорости реакции от концент-рации реагирующих веществ выражается ЗДМ (законом действующих масс), который гласит: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Итак, основным законом кинетики является установленный опытным путем закон: скорость реакции пропорциональна концентрации реагирующих веществ, пример: (т.е. для реакции)

Для этой реакции Н 2 + J 2 = 2НJ – скорость можно выразить через изменение концентрации любого из веществ. Если реакция протекает слева направо, то концентрация Н 2 и J 2 будет уменьшаться, концентрация НJ – увеличиваться по ходу реакции. Для мгновенной скорости реакций можно записать выражение:

квадратными скобками обозначается концентрация.

Физический смысл k– молекулы находятся в непрерывном движении, сталкиваются, разлетаются, ударяются о стенки сосуда. Для того, чтобы произошла химическая реакция образования НJ, молекулам Н 2 и J 2 надо столкнуться. Число же таких столкновений будет тем больше, чем больше молекул H 2 и J 2 содержится в объеме, т. е. тем больше будут величины [Н 2 ] и . Но молекулы движутся с разными скоростями, и суммарная кинетическая энергия двух сталкивающихся молекул будет различной. Если столкнутся самые быстрые молекулы Н 2 и J 2 , энергия их может быть такой большой, что молекулы разобьются на атомы йода и водорода, разлетающиеся и взаимодействующие затем с другими молекулами Н 2 + J 2 ? 2H+2J, далее будет H + J 2 ? HJ + J. Если энергия сталкивающихся молекул меньше, но достаточно велика для ослабления связей H – H и J – J, произойдет реакция образования йодоводорода:

У большинства же сталкивающихся молекул энергия меньше необходимой для ослабления связей в Н 2 и J 2 . Такие молекулы «тихо» столкнутся и также «тихо» разойдутся, оставшись тем, чем они были, Н 2 и J 2 . Таким образом, не все, а лишь часть столкновений приводит к химической реакции. Коэффициент пропорциональности (k) показывает число результативных, приводящих к реакции соударений при концентрациях [Н 2 ] = = 1моль. Величина k– const скорости . Как же скорость может быть постоянной? Да, скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка. Но молекулы движутся хаотически, тогда как же может быть скорость – const? Но постоянная скорость может быть только при постоянной температуре. С ростом температуры увеличивается доля быстрых молекул, столкновения которых приводят к реакции, т. е. увеличивается константа скорости. Но увеличение константы скорости не безгранично. При какой-то температуре энергия молекул станет столь большой, что практически все соударения реагентов будут результативными. При столкновении двух быстрых молекул будет происходить обратная реакция.

Настанет такой момент, когда скорости образования 2НJ из Н 2 и J 2 и разложения будут равны, но это уже химическое равновесие. Зависимость скорости реакции от концентрации реагирующих веществ можно проследить, пользуясь традиционной реакцией взаимодействия раствора тиосульфата натрия с раствором серной кислоты.

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 , (1)

H 2 S 2 O 3 = S?+H 2 O+SO 2 ?. (2)

Реакция (1) протекает практически мгновенно. Скорость реакции (2) зависит при постоянной температуре от концентрации реагирующего вещества H 2 S 2 O 3 . Именно эту реакцию мы наблюдали – в этом случае скорость измеряется временем от начала сливания растворов до появления опалесценции. В статье Л. М. Кузнецовой описана реакция взаимодействия тиосульфата натрия с соляной кислотой. Она пишет, что при сливании растворов происходит опалесценция (помутнение). Но данное утверждение Л. М. Кузнецовой ошибочно так как опалесценция и помутнение – это разные вещи. Опалесценция (от опал и латинского escentia – суффикс, означающий слабое действие) – рассеяние света мутными средами, обусловленное их оптической неоднородностью. Рассеяние света – отклонение световых лучей, распространяющихся в среде во все стороны от первоначального направления. Коллоидные частицы способны рассеивать свет (эффект Тиндаля – Фарадея) – этим объясняется опалесценция, легкая мутноватость коллоидного раствора. При проведении этого опыта надо учитывать голубую опалесценцию, а затем коагуляцию коллоидной суспензии серы. Одинаковую плотность суспензии отмечают по видимому исчезновению какого-либо рисунка (например, сетки на дне стаканчика), наблюдаемого сверху через слой раствора. Время отсчитывают по секундомеру с момента сливания.

Растворы Na 2 S 2 O 3 x 5H 2 O и H 2 SO 4 .

Первый готовят путем растворения 7,5 г соли в 100 мл H 2 O, что соответствует 0,3 М концентрации. Для приготовления раствора H 2 SO 4 той же концентрации отмерить надо 1,8 мл H 2 SO 4 (к), ? = = 1,84 г/см 3 и растворить ее в 120 мл H 2 O. Приготовленный раствор Na 2 S 2 O 3 разлить в три стакана: в первый – 60 мл, во второй – 30 мл, в третий – 10 мл. Во второй стакан добавить 30 мл H 2 O дистиллированной, а в третий – 50 мл. Таким образом, во всех трех стаканах окажется по 60 мл жидкости, но в первом концентрация соли условно = 1, во втором – Ѕ, а в третьем – 1/6. После того, как будут подготовлены растворы, в первый стакан с раствором соли прилейте 60 мл раствора H 2 SO 4 и включите секундомер, и т. д. Учитывая, что скорость реакции падает с разбавлением раствора Na 2 S 2 O 3 , ее можно определить как величину, обратно пропорциональную времени v = 1/? и построить график, отложив на оси абсцисс концентрацию, а на оси ординат – скорость реакции. Из этого вывод – скорость реакции зависит от концентрации веществ. Полученные данные занесены в таблицу 3. Можно этот опыт выполнить с помощью бюреток, но это требует от выполняющего большой практики, потому что график бывает неправильным.

Таблица 3

Скорость и время реакции

Подтверждается закон Гульдберга-Вааге – профессора химии Гульдерга и молодого ученого Вааге).

Рассмотрим следующий фактор – температуру.

При увеличении температуры скорость большинства химических реакций повышается. Эта зависимость описана правилом Вант-Гоффа: «При повышении температуры на каждые 10 °C скорость химических реакций увеличивается в 2 – 4 раза».

где ? – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °C;

v 1 – скорость реакции при температуре t 1 ;

v 2 – скорость реакции при температуре t 2 .

Например, реакция при 50 °С протекает за две минуты, за сколько времени закончится процесс при 70 °С, если температурный коэффициент ? = 2?

t 1 = 120 с = 2 мин; t 1 = 50 °С; t 2 = 70 °С.

Даже небольшое повышение температуры вызывает резкое увеличение скорости реакции активных соударений молекулы. Согласно теории активации, в процессе участвуют только те молекулы, энергия которых больше средней энергии молекул на определенную величину. Эта избыточная энергия – энергия активации. Физический смысл ее – это та энергия, которая необходима для активного столкновения молекул (перестройки орбиталей). Число активных частиц, а следовательно, скорость реакции возрастает с температурой по экспоненциальному закону, согласно уравнению Аррениуса, отражающему зависимость константы скорости от температуры

где А – коэффициент пропорциональности Аррениуса;

k– постоянная Больцмана;

Е А – энергия активации;

R – газовая постоянная;

Т– температура.

Катализатор – вещество, ускоряющее скорость реакции, которое само при этом не расходуется.

Катализ – явление изменения скорости реакции в присутствии катализатора. Различают гомогенный и гетерогенный катализ. Гомогенный – если реагенты и катализатор находятся в одном агрегатном состоянии. Гетерогенный – если реагенты и катализатор в различных агрегатных состояниях. Про катализ см. отдельно (дальше).

Ингибитор – вещество, замедляющее скорость реакции.

Следующий фактор – площадь поверхности. Чем больше поверхность реагирующего вещества, тем больше скорость. Рассмотрим на примере влияние степени дисперсности на скорость реакции.

CaCO 3 – мрамор. Плиточный мрамор опустим в соляную кислоту HCl, подождем пять минут, он растворится полностью.

Порошкообразный мрамор – с ним проделаем ту же процедуру, он растворился через тридцать секунд.

Уравнение обоих процессов одинаково.

CaCO 3 (тв) + HCl(г) = CaCl 2 (тв) + H 2 O(ж) + CO 2 (г) ?.

Итак, при добавлении порошкообразного мрамора время меньше, чем при добавлении плиточного мрамора, при одинаковой массе.

С увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Уравнение изотермы химической реакции Если реакция протекает обратимо, то?G= 0.Если реакция протекает необратимо, то?G? 0 и можно рассчитать изменение?G. где? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

3. Уравнения изохоры, изобары химической реакции Зависимость К от температуры Уравнение изобары: Уравнение изохоры: По ним судят о направлении протекания

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

1. Понятие химической кинетики Кинетика – наука о скоростях химических реакций.Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице поверхности

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода Факторы, влияющие на?Н2:1) ?тока (плотность тока). Зависимость от плотности тока описывается уравнением Тафеля;2) природа материала катода – ряд по возрастанию?, ?– перенапряжение.В уравнении Тафеля

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги Что такое теория относительности автора Ландау Лев Давидович

Ядерные реакции и электрический заряд Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома,

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

ЯДЕРНЫЕ РЕАКЦИИ МЕТОДЫ БОМБАРДИРОВКИ ЯДЕР1.40. Кокрофт и Уолтон получали протоны с достаточно большой энергией путем ионизации газообразного водорода и последующего ускорения ионов высоковольтной установкой с трансформатором и выпрямителем. Подобный же метод можно

Из книги 50 лет советской физики автора Лешковцев Владимир Алексеевич

ПРОБЛЕМА ЦЕПНОЙ РЕАКЦИИ 2.3. Принцип действия атомных бомб или силовой установки, использующей деление урана, достаточно прост. Если один нейтрон вызывает деление, которое приводит к освобождению нескольких новых нейтронов, то число делений может чрезвычайно быстро

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ПРОДУКТЫ РЕАКЦИИ И ПРОБЛЕМА РАЗДЕЛЕНИЯ 8.16. В хэнфордской установке процесс производства плутония разделяется на две главных части: собственно получение его в котле и выделение его из блоков урана, в которых он образуется. Переходим к рассмотрению второй части процессу

Из книги На кого упало яблоко автора Кессельман Владимир Самуилович

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗДЕЛЕНИЕ ИЗОТОПОВ 9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки

Из книги автора

Осуществление цепной реакции деления ядер Теперь встал со всей силой вопрос о цепной реакции деления и о возможности получения разрушительной взрывной энергии деления. Этот вопрос роковым образом переплелся с мировой войной, развязанной фашистской Германией 1 сентября

Из книги автора

И скорость относительна! Из принципа относительности движения следует, что говорить о прямолинейном и равномерном движении тела с некоторой скоростью, не указывая, относительно какой из покоящихся лабораторий измерена скорость, имеет столь же мало смысла, как говорить

Из книги автора

Скорость звука Случалось ли вам наблюдать издали за дровосеком, рубящим дерево? Или, быть может, вы следили за тем, как вдали работает плотник, вколачивая гвозди? Вы могли заметить при этом очень странную вещь: удар раздается не тогда, когда топор врезается в дерево или

Из книги автора

УПРАВЛЯЕМЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ Неуправляемые термоядерные реакции происходят при взрывах водородных бомб. Они приводят к высвобождению громадного количества ядерной энергии, сопровождающемуся крайне разрушительным взрывом. Теперь задача ученых - найти пути

Из книги автора

Из книги автора

В лабиринтах реакции деления В 1938 году немецкие ученые Отто Ган и Фриц Штрассман (1902–1980) сделали удивительное открытие. Они обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра, примерно вдвое более легкие, чем исходное ядро урана. Дальнейшие